EWMACD Algorithm in Early Detection of Defoliation Caused by Dendrolimus tabulaeformis Tsai et Liu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pinus Tabulaeformis Forest Mask
2.3. Training and Validation Data
3. Methodology
3.1. Fusion of Sentinel-2 and Landsat-8
3.2. Defoliation Detection Algorithm
3.2.1. Feature Selection
3.2.2. EWMACD Algorithm
3.3. Accuracy Assessment
4. Results
4.1. Feature Selection Results
4.2. Feasibility Analysis of Using EWMACD Algorithm for Pest Detection
4.3. Assessment of Infestation Detection Accuracy
4.3.1. Overall Detection Results of EWMACD
4.3.2. Assessment of Accuracy in Spatial Domain
4.3.3. Assessment of Accuracy in Temporal Domain
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Si, Y.; Zheng, H.; Li, Q.; Deng, J.; Qin, T. Construction of forest pests insurance index based on panel data. For. Econ. 2016, 71–74. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.L.; Yang, G.J.; Zhu, C.H.; Huo, L.N.; Feng, H.K. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ. 2018, 217, 323–339. [Google Scholar] [CrossRef]
- Huang, C.-y.; Anderegg, W.R.L.; Asner, G.P. Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sens. Environ. 2019, 231, 111233. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Tu, Q.; Zhang, S. Analysis on the trend of disoersed pattern of Chinese -pine caterpillar in the sequential process of duration hibernating larvae through up the tree. Acta Ecol. Sin. 1992, 1, 32–39. [Google Scholar]
- Zhang, N.; Wang, Y.; Zhang, X. Extraction of tree crowns damaged by Dendrolimus tabulaeformis Tsai et Liu via spectral-spatial classification using UAV-based hyperspectral images. Plant Methods 2020, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef]
- Coops, N.C.; Johnson, M.; Wulder, M.A.; White, J.C. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2006, 103, 67–80. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef]
- Spruce, J.P.; Sader, S.; Ryan, R.E.; Smoot, J.; Kuper, P.; Ross, K.; Prados, D.; Russell, J.; Gasser, G.; McKellip, R.; et al. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. Environ. 2011, 115, 427–437. [Google Scholar] [CrossRef]
- Olsson, P.-O.; Lindström, J.; Eklundh, L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI. Remote Sens. Environ. 2016, 181, 42–53. [Google Scholar] [CrossRef]
- Chávez, R.; Rocco, R.; Gutiérrez, Á.; Dörner, M.; Estay, S. A Self-Calibrated Non-Parametric Time Series Analysis Approach for Assessing Insect Defoliation of Broad-Leaved Deciduous Nothofagus pumilio Forests. Remote Sens. 2019, 11, 204. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Hawbaker, T.J.; Hart, S.J.; Andrus, R.A.; Meddens, A.J.H.; Hicke, J.A.; Eastman, J.R.; Kulakowski, D. Detecting subtle change from dense Landsat time series: Case studies of mountain pine beetle and spruce beetle disturbance. Remote Sens. Environ. 2021, 263, 112560. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Mickley, J.G.; Plotkin, A.B.; MacLean, R.G.; Anderson, R.M.; Brown, L.M.; Wagner, D.L.; Singer, M.S.; Bagchi, R. Predicting defoliator abundance and defoliation measurements using Landsat-based condition scores. Remote Sens. Ecol. Conserv. 2021, 7, 592–609. [Google Scholar] [CrossRef]
- Meng, R.; Gao, R.; Zhao, F.; Huang, C.Q.; Sun, R.; Lv, Z.G.; Huang, Z.H. Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest. Remote Sens. Environ. 2022, 269, 112847. [Google Scholar] [CrossRef]
- Kumbula, S.T.; Mafongoya, P.P. Kabir Yunus Lottering, Romano Trent Ismail, Riyad. Using Sentinel-2 Multispectral Images to Map the Occurrence of the Cossid Moth (Coryphodema tristis) in Eucalyptus Nitens Plantations of Mpumalanga, South Africa. Remote Sens. 2019, 11, 278. [Google Scholar] [CrossRef]
- Andresini, G.; Appice, A.; Malerba, D. SILVIA: An eXplainable Framework to Map Bark Beetle Infestation in Sentinel-2 Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 10050–10066. [Google Scholar] [CrossRef]
- Marinelli, D.; Dalponte, M.; Frizzera, L.; Næsset, E.; Gianelle, D. A method for continuous sub-annual mapping of forest disturbances using optical time series. Remote Sens. Environ. 2023, 299, 113852. [Google Scholar] [CrossRef]
- Shang, R.; Zhu, Z.; Zhang, J.; Qiu, S.; Yang, Z.; Li, T.; Yang, X. Near-real-time monitoring of land disturbance with harmonized Landsats 7–8 and Sentinel-2 data. Remote Sens. Environ. 2022, 278, 113073. [Google Scholar] [CrossRef]
- Mulverhill, C.; Coops, N.C.; Achim, A. Continuous monitoring and sub-annual change detection in high-latitude forests using Harmonized Landsat Sentinel-2 data. ISPRS J. Photogramm. Remote Sens. 2023, 197, 309–319. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel_2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ling, F.; Wang, X.; Foody, G.M.; Boyd, D.S.; Li, X.D.; Du, Y.; Atkinson, P.M. Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record. Remote Sens. Environ. 2021, 261, 112470. [Google Scholar] [CrossRef]
- Huo, L.N.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [Google Scholar] [CrossRef]
- Bárta, V.; Lukeš, P.; Homolová, L. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102335. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C. Early Detection of Bark Beetle Infestation in Norway Spruce (Picea abies, L.) using WorldView-2 Data. Photogramm Fernerkun. 2014, 2014, 351–367. [Google Scholar] [CrossRef]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.K.; Groen, T.A.; Heurich, M. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 199–209. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Hicke, J.A.; Vierling, L.A.; Hudak, A.T. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sens. Environ. 2013, 132, 49–58. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Ghosh, A.; Joshi, P.K.; Koch, B. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sens. Environ. 2014, 140, 533–548. [Google Scholar] [CrossRef]
- Brooks, E.B.; Wynne, R.H.; Thomas, V.A. On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3316–3332. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.N.; Liu, M.L.; Yang, J.H.; Zhu, L.H.; Zhou, B.T. Online Forest Disturbance Detection at the Sub-Annual Scale Using Spatial Context From Sparse Landsat Time Series. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4507814. [Google Scholar] [CrossRef]
- Zhang, T.W.; Wu, L.; Liu, X.N.; Liu, M.L.; Chen, C.; Yang, B.W.; Xu, Y.; Zhang, S.C. Detection of Forest Disturbances with Different Intensities Using Landsat Time Series Based on Adaptive Exponentially Weighted Moving Average Charts. Forests 2023, 15, 19. [Google Scholar] [CrossRef]
- Zhang, M.; Song, X.X.; Lv, K.; Yao, Y.; Gong, Z.X.; Zheng, C.X. Differential proteomic analysis revealing the ovule abortion in the female-sterile line of Pinus tabulaeformis Carr. Plant Sci. 2017, 260, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Li, N.W.; Zhang, X.L.; Zhang, N.; Zhu, C.H.; Sun, Z.F. Hazards Evaluation of Dendrolimus tabulaeformis (Lepidoptera: Lasiocampidae) Based on Weighted Information Value Model. Linye Kexue/Scientia Silvae Sinicae 2019, 55, 106–117. [Google Scholar] [CrossRef]
- Shao, Z.F.; Cai, J.J.; Fu, P.; Hu, L.Q.; Liu, T. Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product. Remote Sens. Environ. 2019, 235, 111425. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M. On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Wang, Q.M.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.Q.; Zhang, Y.H.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef]
- Gnilke, A.; Sanders, T.G.M. Distinguishing Abrupt and Gradual Forest Disturbances with MODIS-Based Phenological Anomaly Series. Front. Plant Sci. 2022, 13, 863116. [Google Scholar] [CrossRef] [PubMed]
- Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 2011, 115, 3707–3718. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Wulder, M.A.; Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 2015, 170, 166–177. [Google Scholar] [CrossRef]
- Hollaus, M.; Vreugdenhil, M. Radar Satellite Imagery for Detecting Bark Beetle Outbreaks in Forests. Curr. For. Rep. 2019, 5, 240–250. [Google Scholar] [CrossRef]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Heurich, M. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Lowry, C.A.; Woodall, W.H. A multivariate exponentially weighted moving average. Technometrics 1992, 34, 46–53. [Google Scholar] [CrossRef]
- Haynes, K.J.; Allstadt, A.J.; Klimetzek, D. Forest defoliator outbreaks under climate change: Effects on the frequency and severity of outbreaks of five pine insect pests. Glob. Change Biol. 2014, 20, 2004–2018. [Google Scholar] [CrossRef] [PubMed]
- Linnakoski, R.; Kasanen, R.; Dounavi, A.; Forbes, K.M. Editorial: Forest Health under Climate Change: Effects on Tree Resilience, and Pest and Pathogen Dynamics. Front. Plant Sci. 2019, 10, 1157. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Huang, J.; Zhang, L.; Tang, J. Spring Temperature Accumulation Is a Primary Driver of Forest Disease and Pest Occurrence in China in the Context of Climate Change. Forests 2023, 14, 1730. [Google Scholar] [CrossRef]
Landsat | Sentinel-2 | ||
---|---|---|---|
Date | Date1 | Date2 | Date3 |
24/1/2017 | 2/1/2017 | 12/1/2017 | 4/2/2017 |
18/2/2017 | 12/1/2017 | 4/2/2017 | 26/3/2017 |
13/3/2017 | 4/2/2017 | 26/3/2017 | 15/4/2017 |
29/3/2017 | 26/3/2017 | 15/4/2017 | 22/4/2017 |
9/5/2017 | 15/4/2017 | 22/4/2017 | 25/5/2017 |
1/6/2017 | 22/4/2017 | 25/5/2017 | 14/6/2017 |
26/6/2017 | 25/5/2017 | 14/6/2017 | 11/7/2017 |
29/8/2017 | 5/8/2017 | 17/9/2017 | 22/9/2017 |
9/5/2017 | 5/8/2017 | 17/9/2017 | 22/9/2017 |
24/11/2017 | 8/11/2017 | 3/11/2017 | 28/11/2017 |
20/1/2018 | 2/1/2018 | 12/1/2018 | 26/2/2018 |
2/5/2018 | 2/1/2018 | 12/1/2018 | 26/2/2018 |
21/2/2018 | 12/1/2018 | 26/2/2018 | 23/3/2018 |
16/3/2018 | 26/2/2018 | 23/3/2018 | 15/4/2018 |
1/4/2018 | 23/3/2018 | 15/4/2018 | 2/5/2018 |
12/5/2018 | 2/5/2018 | 7/5/2018 | 27/5/2018 |
Index | Formulation | Indicated Change | Reference |
---|---|---|---|
EVI | Needle structure | [12,37] | |
RGI | Coloration | [8,27] | |
NBR | Moisture stress& needle structure | [38,39] | |
SWIR2 | Moisture stress | [13,23] |
Index | JM Distance (Early Stage) | JM Distance (Late Stage) |
---|---|---|
EVI | 0.83 | 1.02 |
RGI | 0.83 | 0.98 |
NBR | 0.80 | 1.09 |
SWIR | 0.87 | 0.86 |
Early Stage | Late Stage | |||
---|---|---|---|---|
Multi-Source Image | Sentinel-2 Image | Multi-Source Image | Sentinel-2 Image | |
Precision | 0.98 | 0.6 | 0.89 | 0.67 |
Recall | 0.77 | 0.49 | 0.87 | 0.94 |
OA | 0.86 | 0.59 | 0.87 | 0.74 |
F1 Score | 0.86 | 0.54 | 0.88 | 0.78 |
Late = 0 | Late ≤ 3 | Late > 3 | Total | |
---|---|---|---|---|
Detection | 37 | 2 | 5 | 44 |
Proportion | 84.1% | 4.5% | 11.4% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Cui, Z.; Liu, X.; Liu, M.; Yang, B.; Feng, L.; Zhou, B.; Zhang, T.; Tan, Z.; Wu, L. EWMACD Algorithm in Early Detection of Defoliation Caused by Dendrolimus tabulaeformis Tsai et Liu. Remote Sens. 2024, 16, 2299. https://doi.org/10.3390/rs16132299
Zhao Y, Cui Z, Liu X, Liu M, Yang B, Feng L, Zhou B, Zhang T, Tan Z, Wu L. EWMACD Algorithm in Early Detection of Defoliation Caused by Dendrolimus tabulaeformis Tsai et Liu. Remote Sensing. 2024; 16(13):2299. https://doi.org/10.3390/rs16132299
Chicago/Turabian StyleZhao, Yuxin, Zeyu Cui, Xiangnan Liu, Meiling Liu, Ben Yang, Lei Feng, Botian Zhou, Tingwei Zhang, Zheng Tan, and Ling Wu. 2024. "EWMACD Algorithm in Early Detection of Defoliation Caused by Dendrolimus tabulaeformis Tsai et Liu" Remote Sensing 16, no. 13: 2299. https://doi.org/10.3390/rs16132299
APA StyleZhao, Y., Cui, Z., Liu, X., Liu, M., Yang, B., Feng, L., Zhou, B., Zhang, T., Tan, Z., & Wu, L. (2024). EWMACD Algorithm in Early Detection of Defoliation Caused by Dendrolimus tabulaeformis Tsai et Liu. Remote Sensing, 16(13), 2299. https://doi.org/10.3390/rs16132299