Application of Normalized Radar Backscatter and Hyperspectral Data to Augment Rangeland Vegetation Fractional Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Training Data
2.2.2. Landsat Composites and Ancillary Data
2.2.3. Sentinel SAR Data
2.2.4. EMIT Data
2.2.5. Model Architecture
2.3. Tests
2.4. Spectral Profile Analysis
2.5. Caveats
3. Results
3.1. Accuracy Metrics
3.2. Predictions
3.3. SAR and Spectral Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rigge, M.; Shi, H.; Homer, C.; Danielson, P.; Granneman, B. Long-term trajectories of fractional component change in the Northern Great Basin, USA. Ecosphere 2019, 10, e02762. [Google Scholar] [CrossRef]
- Shi, H.; Rigge, M.; Postma, K.; Bunde, B. Trends analysis of rangeland condition monitoring assessment and projection fractional component time-series (1985–2020). GIScience Remote Sens. 2022, 59, 1243–1265. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Rigge, M.; Shi, H.; Meyer, D. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sens. Environ. 2015, 168, 286–300. [Google Scholar] [CrossRef]
- Rigge, M.B.; Bunde, B.; Postma, K.; Shi, H. Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U.S. 1985–2023; U.S. Geological Survey Data Release; US Geological Survey: Reston, VA, USA, 2024. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis Ravi, K.; Runyan, C. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Gremer, J.R.; Bradford, J.B.; Munson, S.M.; Duniway, M.C. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States. Glob. Chang. Biol. 2015, 21, 4049–4062. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Dannenberg, M.; Yan, D.; Herrmann, S.; Barnes, M.; Barron-Gafford, G.; Biederman, J.; Ferrenberg, S.; Fox, A.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Wood, D.; Preston, T.; Powell, S.; Stoy, P. Multiple UAV flights across the growing season can characterize fine scale phenological heterogeneity within and among vegetation functional groups. Remote Sens. 2022, 14, 1290. [Google Scholar] [CrossRef]
- Zhou, Y.; Boutton, T.; Wu, X.; Yang, C. Spatial heterogeneity of subsurface soil texture drives landscape-scale patterns of woody patches in a subtropical savanna. Landsc. Ecol. 2017, 32, 915–929. [Google Scholar] [CrossRef]
- Gaffney, R.; Augustine, D.J.; Kearney, S.P.; Porensky, L.M. Using hyperspectral imagery to characterize rangeland vegetation composition at process-relevant scales. Remote Sens. 2021, 13, 4603. [Google Scholar] [CrossRef]
- Applestein, C.; Germino, M.J. Detecting shrub recovery in sagebrush steppe: Comparing Landsat-derived maps with field data on historical wildfires. Fire Ecol. 2021, 17, 5. [Google Scholar] [CrossRef]
- Rigge, M.B.; Bunde, B.; Postma, K.; Shi, H. Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series across the Western U.S. 1985–2021; U.S. Geological Survey Data Release; US Geological Survey: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Rigge, M.; Homer, C.; Shi, H.; Meyer, D. Validating a Landsat time-series of fractional component cover across western U.S. rangelands. Remote Sens. 2019, 11, 3009. [Google Scholar] [CrossRef]
- Stavros, E.; Schimel, D.; Pavlick, R.; Serbin, S.; Swann, A.; Duncanson, L.; Fisher, J.; Fassnacht, F.; Ustin, S.; Dubayah, R.; et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 2017, 1, 0194. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.D.; del Valle, H.F.; Bouza, P.J.; Metternicht, G.I.; Hardtke, L.A. Ecological site classification of semiarid rangelands: Synergistic use of Landsat and Hyperion imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 11–21. [Google Scholar] [CrossRef]
- Connelly, D.S.; Thompson, D.R.; Mahowald, N.M.; Li, L.; Carmon, N.; Okin, G.S.; Green, R.O. The EMIT mission information yield for mineral dust radiative forcing. Remote Sens. Environ. 2021, 258, 112380. [Google Scholar] [CrossRef]
- Green, R.O.; Mahowald, N.; Thompson, D.R.; Ung, C.; Brodrick, P.; Pollock, R.; Bennett, M.; Lundeen, S.; Joyce, M.; Olson-Duvall, W.; et al. Performance and early results from the Earth surface mineral dust source investigation (EMIT) imaging spectroscopy mission. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–10 March 2023; pp. 1–10. [Google Scholar]
- Sousa, D.; Small, C. Topological generality and spectral dimensionality in the Earth Mineral Dust Source Investigation (EMIT) using joint characterization and the spectral mixture residual. Remote Sens. 2023, 15, 2295. [Google Scholar] [CrossRef]
- Dennison, P.E.; Lamb, B.T.; Campbell, M.J.; Kokaly, R.F.; Hively, W.D.; Vermote, E.; Dabney, P.; Serbin, G.; Quemada, M.; Daughtry, C.S.; et al. Modeling global indices for estimating non-photosynthetic vegetation cover. Remote Sens. Environ. 2023, 295, 113715. [Google Scholar] [CrossRef]
- Baup, F.; Mougin, E.; Hiernaux, P.; Lopes, A.; De Rosnay, P.; Chênerie, I. Radar signatures of Sahelian surfaces in Mali using ENVISAT-ASAR data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2354–2363. [Google Scholar] [CrossRef]
- Eineder, M.; Balss, U.; Suchandt, S.; Gisinger, C.; Cong, X.; Runge, H. A definition of next-generation SAR products for geodetic applications. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Huang, S.; Potter, C.; Crabtree, R.L.; Hager, S.; Gross, P. Fusing optical and radar data to estimate sagebrush, herbaceous, and bare ground cover in Yellowstone. Remote Sens. Environ. 2010, 114, 251–264. [Google Scholar] [CrossRef]
- Lucas, R.; Milne, A.; Cronin, N.; Witte, C.; Denham, R. The potential of synthetic aperture radar (SAR) for quantifying the biomass of Australia’s woodlands. Rangel. J. 2000, 22, 124–140. [Google Scholar] [CrossRef]
- Zhou, Z.; Caccetta, P.; Sims, N.; Held, A. Multiband SAR data for rangeland pasture monitoring. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Bovenga, F. Special Issue “Synthetic Aperture Radar (SAR) Techniques and Applications”. Sensors 2020, 20, 1851. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, G.C. Motion compensation/autofocus in airborne synthetic aperture radar: A review. IEEE Geosci. Remote Sens. Mag. 2021, 10, 185–206. [Google Scholar] [CrossRef]
- Richards, J.A. The Use of Multiple-Polarization Data in Foliage Penetrating (FOPEN) Synthetic Aperture Radar (SAR) Applications (No. SAND2002-2239); Sandia National Lab (SNL-NM): Albuquerque, NM, USA; Sandia National Lab. (SNL-CA): Livermore, CA, USA, 2002. [Google Scholar]
- Musa, Z.N.; Popescu, I.; Mynett, A. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping, and parameter estimation. Hydrol. Earth Syst. Sci. 2015, 19, 3755–3769. [Google Scholar] [CrossRef]
- Tao, M.; Su, J.; Huang, Y.; Wang, L. Mitigation of radio frequency interference in synthetic aperture radar data: Current status and future trends. Remote Sens. 2019, 11, 2438. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- McNairn, H.; Shang, J. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In Multitemporal Remote Sensing: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 317–340. [Google Scholar]
- Shen, X.; Wang, D.; Mao, K.; Anagnostou, E.; Hong, Y. Inundation extent mapping by synthetic aperture radar: A review. Remote Sens. 2019, 11, 879. [Google Scholar] [CrossRef]
- Lindsay, E.J.; King, D.J.; Davidson, A.M.; Daneshfar, B. Canadian prairie rangeland and seeded forage classification using multiseason Landsat 8 and Summer RADARSAT-2. Rangel. Ecol. Manag. 2019, 72, 92–102. [Google Scholar] [CrossRef]
- Musick, H.B.; Schaber, G.S.; Breed, C.S. AIRSAR studies of woody shrub density in semiarid rangeland: Jornada del Muerto, New Mexico. Remote Sens. Environ. 1998, 66, 29–40. [Google Scholar] [CrossRef]
- Komisarenko, V.; Voormansik, K.; Elshawi, R.; Sakr, S. Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region. Sci. Rep. 2022, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Philipp, M.B.; Levick, S.R. Exploring the potential of C-Band SAR in contributing to burn severity mapping in tropical savanna. Remote Sens. 2019, 12, 49. [Google Scholar] [CrossRef]
- Sano, E.; Moran, M.; Huete, A.; Miura, T. C-and multiangle Ku-band synthetic aperture radar data for bare soil moisture estimation in agricultural areas. Remote Sens. Environ. 1998, 64, 77–90. [Google Scholar] [CrossRef]
- Duguay, Y.; Bernier, M.; Lévesque, E.; Tremblay, B. Potential of C and X band SAR for shrub growth monitoring in sub-arctic environments. Remote Sens. 2015, 7, 9410–9430. [Google Scholar] [CrossRef]
- MirMazloumi, S.M.; Sahebi, M.R. Assessment of different backscattering models for bare soil surface parameters estimation from SAR data in band C, L and P. Eur. J. Remote Sens. 2016, 49, 261–278. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.; Dubovyk, O.; Graw, V.; Greve, K. Assessing the impact of drought stress on grasslands using multi-temporal SAR data of Sentinel-1: A case study in Eastern Cape, South Africa. Eur. J. Remote Sens. 2020, 53, 3–16. [Google Scholar] [CrossRef]
- NASA. Landsat Next. 2024. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-next/ (accessed on 20 February 2024).
- Lu, B.; He, Y.; Dao, P.D. Comparing the performance of multispectral and hyperspectral images for estimating vegetation properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1784–1797. [Google Scholar] [CrossRef]
- Bostan, S.; Ortak, M.A.; Tuna, C.; Akoguz, A.; Sertel, E.; Ustundag, B.B. Comparison of classification accuracy of co-located hyperspectral & multispectral images for agricultural purposes. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–4. [Google Scholar]
- Hughes, G. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Naiken, V.; Bulcock, H. A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation. Water SA 2008, 34, 147–154. [Google Scholar] [CrossRef]
- Sankey, J.B.; Sankey, T.T.; Li, J.; Ravi, S.; Wang, G.; Caster, J.; Kasprak, A. Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sens. Environ. 2021, 253, 112223. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data. Int. J. Remote Sens. 2007, 28, 4897–4911. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M. Discriminating rangeland management practices using simulated hyspIRI, landsat 8 OLI, sentinel 2 MSI, and VENµs spectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3957–3969. [Google Scholar] [CrossRef]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis ready data: Enabling analysis of the Landsat archive. Remote Sens. 2018, 10, 1363. [Google Scholar] [CrossRef]
- Dyke, G.; Rosenqvist, A.; Killough, B.; Yuan, F. Intercomparison of Sentinel-1 Datasets from Google Earth Engine and the Sinergise Sentinel Hub Card4L Tool. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1796–1799. [Google Scholar]
- Green, R. EMIT L2A Estimated Surface Reflectance and Uncertainty and Masks 60 m V001. 2022, Distributed by NASA EOSDIS Land Processes DAAC. 2022. Available online: https://lpdaac.usgs.gov/products/emitl2arflv001/ (accessed on 11 December 2023).
- Herrick, J.E.; Van Zee, J.W.; McCord, S.E.; Courtright, E.M.; Karl, J.W.; Burkett, L.M. Monitoring Manual for Grassland, Shrubland, and Savanna Ecosystems, 2nd ed.; USDA—ARS Jornada Experimental Range: New Mexico, Mexico, 3 November 2018; Volume 1, Available online: https://www.landscapetoolbox.org/manuals/monitoring-manual/ (accessed on 15 February 2024).
- Dewitz, J. National Land Cover Database (NLCD) 2021 Products: U.S. Geological Survey Data Release; US Geological Survey: Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Di, L. Deriving 2011 cultivated land cover data sets using usda national agricultural statistics service historic cropland data layers. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6297–6300. [Google Scholar]
- Doherty, K.; Theobald, D.; Bradford, J.; Wiechman, L.; Bedrosian, G.; Boyd, C.; Cahill, M.; Coates, P.; Creutzburg, M.; Crist, M.; et al. A Sagebrush Conservation Design to Proactively Restore America’s Sagebrush Biome; U.S. Geological Survey Open-File Report 2022-1081; US Geological Survey: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Ma, W.; Gong, C.; Hu, Y.; Meng, P.; Xu, F. The Hughes phenomenon in hyperspectral classification based on the ground spectrum of grasslands in the region around Qinghai Lake. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Applications, Beijing, China, 25–27 June 2013; Volume 8910, pp. 363–373. [Google Scholar]
- Hanson, D.; Weber, K.T. 2010 Field spectrometry collection of sagebrush at the O’Neal Ecological Reserve, Idaho. In Final report—Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho (NNX08AO90G); Weber, K.T., Davis, K., Eds.; Idaho State University GIS Training and Research Center: Pocatello, ID, USA, 2011; pp. 29–36. Available online: https://giscenter.isu.edu/research/Techpg/nasa_postfire/index.htm (accessed on 2 April 2024).
- Alonso, M.; Malpica, J.; de Agirre, A. Consequences of the Hughes phenomenon on some classification techniques. In Proceedings of the ASPRS 2001 Annual Conference, Milwaukee, WI, USA, 1–5 May 2011; pp. 1–5. [Google Scholar]
- Tang, R.; Li, Z.; Sun, X. Temporal upscaling of instantaneous evapotranspiration: An intercomparison of four methods using eddy covariance measurements and MODIS data. Remote Sens. Environ. 2013, 138, 102–118. [Google Scholar] [CrossRef]
- Rigge, M.; Homer, C.; Cleeves, L.; Meyer, D.; Bunde, B.; Shi, H.; Xian, G.; Bobo, M. Quantifying western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens. 2020, 12, 412. [Google Scholar] [CrossRef]
- Lucas, R.; Mueller, N.; Siggins, A.; Owers, C.; Clewley, D.; Bunting, P.; Kooymans, C.; Tissott, B.; Lewis, B.; Lymburner, L.; et al. Land cover mapping using digital earth Australia. Data 2019, 4, 143. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Pastick, N.; Wylie, B.; Wu, Z. Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland ecosystems. Remote Sens. 2018, 10, 791. [Google Scholar] [CrossRef]
Test | Landsat Composites | SAR Mosaics | EMIT Mosaics | LNEXT |
---|---|---|---|---|
1 (Base) | x | |||
2 (Base + SAR) | x | x | ||
3 (Base + EMIT) | x | x | ||
4 (Base + SAR + EMIT) | x | x | x | |
5 (Base + LNEXT) | x | x |
Test | Annual Herbaceous | Herbaceous | Litter | Sagebrush | Shrub | Bare | Tree | Average |
---|---|---|---|---|---|---|---|---|
Base | 0.911 | 0.943 | 0.944 | 0.884 | 0.886 | 0.982 | 0.908 | 0.922 |
Base + SAR | 0.909 | 0.943 | 0.955 | 0.882 | 0.886 | 0.982 | 0.919 | 0.923 |
Base + EMIT | 0.919 | 0.950 | 0.951 | 0.898 | 0.901 | 0.984 | 0.919 | 0.931 |
All | 0.921 | 0.950 | 0.953 | 0.899 | 0.901 | 0.984 | 0.920 | 0.932 |
Base + LNEXT | 0.917 | 0.948 | 0.950 | 0.896 | 0.893 | 0.983 | 0.919 | 0.929 |
R2 | Avg. Relative Difference from Base (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Annual Herbaceous | Herbaceous | Litter | Sagebrush | Shrub | Bare | Tree | Average | ||
Base | 0.40 | 0.30 | 0.20 | 0.43 | 0.44 | 0.42 | 0.80 | 0.43 | N/A |
Base + SAR | 0.42 | 0.34 | 0.23 | 0.48 | 0.48 | 0.45 | 0.83 | 0.46 | 7.55 |
Base + EMIT | 0.52 | 0.44 | 0.39 | 0.56 | 0.52 | 0.51 | 0.93 | 0.55 | 29.00 |
ALL | 0.53 | 0.48 | 0.40 | 0.53 | 0.50 | 0.52 | 0.96 | 0.56 | 30.66 |
Base + LNEXT | 0.48 | 0.38 | 0.35 | 0.49 | 0.47 | 0.48 | 0.90 | 0.51 | 18.25 |
RMSE | |||||||||
Base | 9.60 | 16.65 | 9.22 | 9.36 | 10.24 | 14.13 | 2.11 | 10.19 | N/A |
Base + SAR | 9.37 | 15.99 | 9.09 | 9.02 | 9.96 | 14.05 | 2.08 | 9.94 | −2.47 |
Base + EMIT | 8.56 | 14.82 | 7.94 | 8.37 | 9.53 | 13.13 | 1.60 | 9.13 | −10.34 |
ALL | 8.45 | 14.15 | 7.88 | 8.56 | 9.76 | 13.11 | 1.03 | 8.99 | −11.74 |
Base + LNEXT | 8.94 | 15.70 | 8.17 | 9.09 | 10.16 | 13.80 | 1.53 | 9.63 | −5.51 |
Annual Herbaceous | Herbaceous | Litter | Sagebrush | Shrub | Bare | Tree | |
---|---|---|---|---|---|---|---|
Base | 3.42 | 35.21 | 13.98 | 9.95 | 22.38 | 18.29 | 10.13 |
Base + SAR | 3.20 | 38.28 | 13.88 | 10.95 | 24.72 | 16.82 | 6.31 |
Base + EMIT | 3.44 | 35.82 | 14.16 | 11.16 | 20.95 | 19.15 | 9.92 |
ALL | 3.40 | 36.88 | 13.78 | 11.24 | 19.45 | 18.08 | 11.81 |
Base + LNEXT | 3.04 | 36.59 | 14.34 | 11.17 | 21.07 | 17.16 | 10.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigge, M.; Bunde, B.; Postma, K.; Oliver, S.; Mueller, N. Application of Normalized Radar Backscatter and Hyperspectral Data to Augment Rangeland Vegetation Fractional Classification. Remote Sens. 2024, 16, 2315. https://doi.org/10.3390/rs16132315
Rigge M, Bunde B, Postma K, Oliver S, Mueller N. Application of Normalized Radar Backscatter and Hyperspectral Data to Augment Rangeland Vegetation Fractional Classification. Remote Sensing. 2024; 16(13):2315. https://doi.org/10.3390/rs16132315
Chicago/Turabian StyleRigge, Matthew, Brett Bunde, Kory Postma, Simon Oliver, and Norman Mueller. 2024. "Application of Normalized Radar Backscatter and Hyperspectral Data to Augment Rangeland Vegetation Fractional Classification" Remote Sensing 16, no. 13: 2315. https://doi.org/10.3390/rs16132315
APA StyleRigge, M., Bunde, B., Postma, K., Oliver, S., & Mueller, N. (2024). Application of Normalized Radar Backscatter and Hyperspectral Data to Augment Rangeland Vegetation Fractional Classification. Remote Sensing, 16(13), 2315. https://doi.org/10.3390/rs16132315