Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach
Abstract
:1. Introduction
2. Methods
Model Output Performance Metrics
- (a)
- (b)
- Universal image quality index denoted as ‘Q’ is often used to determine the average visual correlation between the original and the generated synthetic image [36]. Q is a product of 3 components (Loss of correlation, Luminance distortion, and Contrast distortion). When the generated image is closer to the original image, then the Q value is closer to one. The value of 1 is achieved if and only if yi = xi for all i = 1, 2, …, N.
- (c)
- Peak signal-to-noise ratio (PSNR) is a commonly used mean-squared-error-based metric for measuring the quality of a generated image by quantifying the pixel-to-pixel difference between two (original and generated) images. The higher the PSNR, the better the quality of the reconstructed image, and it is expressed in terms of the logarithmic decibel scale [34,37].
3. Materials and Method
3.1. Dataset
3.2. Network Architectures and Training
4. Results
SCR Model Prediction Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spoto, F.; Sy, O.; Laberinti, P.; Martimort, P.; Fernandez, V.; Colin, O.; Meygret, A. Overview of sentinel-2. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1707–1710. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Mondini, A.C.; Camici, S. Effectiveness of Sentinel-1 and Sentinel-2 for flood detetion assessment in Europe. Nat. Hazards Earth Syst. Sci. 2022, 22, 2473–2489. [Google Scholar] [CrossRef]
- Moumtzidou, A.; Bakratsas, M.; Andreadis, S.; Karakostas, A.; Gialampoukidis, I.; Vrochidis, S.; Kompatsiaris, I. Flood detection with Sentinel-2 satellite images in crisis management systems. CoRe Paper—Using Artificial Intelligence to exploit Satellite Data in Risk and Crisis Management. In Proceedings of the 17th ISCRAM Conference, Blacksburg, VA, USA, 24–27 May 2020; pp. 1049–1059. Available online: https://idl.iscram.org/files/anastasiamoumtzidou/2020/2296_AnastasiaMoumtzidou_etal2020.pdf (accessed on 16 January 2024).
- Singh, P.; Komodakis, N. Cloud-Gan: Cloud Removal for Sentinel-2 Imagery Using a Cyclic Consistent Generative Adversarial Networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1772–1775. [Google Scholar] [CrossRef]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 2019, 11, 493–514. [Google Scholar] [CrossRef]
- Wang, Y.; Su, J.; Zhai, X.; Meng, F.; Liu, C. Snow Coverage Mapping by Learning from Sentinel-2 Satellite Multispectral Images via Machine Learning Algorithms. Remote Sens. 2022, 14, 782. [Google Scholar] [CrossRef]
- Darbaghshahi, F.N.; Mohammadi, M.R.; Soryani, M. Cloud Removal in Remote Sensing Images Using Generative Adversarial Networks and SAR-to-Optical Image Translation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Maniyar, C.; Kumar, A. Generative Adversarial Network for Cloud Removal from Optical Temporal Satellite Imagery. In Advances in Intelligent Systems and Computing Soft Computing for Problem Solving, Proceedings of SocProS Volume 2; Springer: Singapore, 2021; pp. 481–491. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Wang, S. Single-image snow removal algorithm based on generative adversarial networks. IET Image Process. 2023, 17, 3580–3588. [Google Scholar] [CrossRef]
- Zakeri, F.; Mariethoz, G. Synthesizing long-term satellite imagery consistent with climate data: Application to daily snow cover. J. Remote Sens. Environ. 2024, 300, 113877. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Yesou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.; Zhang, L. Missing information reconstruction of remote sensing data: A technical review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 61–85. [Google Scholar] [CrossRef]
- Deepthi, N.; Catherine Rakkini, D.; Edison Prabhu, K. Image Restoration by Kriging Interpolation Technique. IOSR J. Electr. Electron. Eng. 2016, 11, 25–37. [Google Scholar]
- Huang, B.; Li, Y.; Han, X.; Cui, Y.; Li, W.; Li, R. Cloud removal from optical satellite imagery with SAR imagery using sparse representation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1046–1050. [Google Scholar] [CrossRef]
- Lin, C.H.; Lai, K.H.; Bin Chen, Z.; Chen, J.Y. Patch-based information reconstruction of cloud-contaminated multitemporal images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 163–174. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Communications of the ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Jozdani, S.; Chen, D.; Pouliot, D.; Johnson, B.A. A review and meta-analysis of generative adversarial networks and their applications in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102734. [Google Scholar] [CrossRef]
- Jia, A.; Jia, Z.H.; Yang, J.; Kasabov, N.K. Single-Image Snow Removal Based on an Attention Mechanism and a Generative Adversarial Network. IEEE Access 2021, 9, 12852–12860. [Google Scholar] [CrossRef]
- Kenji, E.; Sakurada, K.; Wang, W.; Fukui, H.; Matsuoka, M.; Nakamura, R.; Kawaguchi, N. Filmy cloud removal on satellite imagerywith multispectral conditional generative adversarial nets. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1533–1541. [Google Scholar] [CrossRef]
- Toizumi, T.; Zini, S.; Sagi, K.; Kaneko, E.; Tsukada, M.; Schettini, R. Artifact-free thin cloud removal using gans. In Proceedings of the International Conference on Image Processing ICIP, Taipei, Taiwan, 22–25 September 2019; pp. 3596–3600. [Google Scholar] [CrossRef]
- Sarukkai, V.; Jain, A.; Uzkent, B.; Ermon, S. Cloud removal in satellite images using spatiotemporal generative networks. In Proceedings of the 2020 IEEE Winter Conference on Applied Computer Vision, WACV 2020, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1785–1794. [Google Scholar] [CrossRef]
- Liu, Y.F.; Jaw, D.W.; Huang, S.C.; Hwang, J.N. DesnowNet: Context-aware deep network for snow removal. IEEE Trans. Image Process. 2018, 27, 3064–3073. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yun, M.; Tian, J.; Tang, Y.; Wang, G.; Wu, C. Stacked dense networks for single-image snow removal. Neurocomputing 2019, 367, 152163. [Google Scholar] [CrossRef]
- Chen, W.-T.; Fang, H.-Y.; Ding, J.-J.; Tsai, C.-C.; Kuo, S.-Y. JSTASR: Joint size and transparency aware snow removal algorithm based on modified partial convolution and veiling effect removal. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 754–770. [Google Scholar]
- Zhang, K.; Li, R.; Yu, Y.; Luo, W.; Li, C. Deep dense multi-scale network for snow removal using semantic and depth priors. IEEE Trans. Image Process. 2021, 30, 7419–7431. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Zhang, H.; Cheng, B. SGNet: Efficient Snow Removal Deep Network with a Global Windowing Transformer. Mathematics 2024, 12, 1424. [Google Scholar] [CrossRef]
- Yin, M.; Wang, P.; Ni, C. Cloud and snow detection of remote sensing images based on improved Unet3+. Sci. Rep. 2022, 12, 14415. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Zhu, Z.; Lu, J.; Yuan, S.; He, Y.; Zheng, F.; Jiang, H.; Yan, Y.; Sun, Q. Automated Generation and Analysis of Molecular Images Using Generative Artificial Intelligence Models. J. Phys. Chem. Lett. 2024, 15, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Chandhok, S. CycleGAN: Unpaired Image-to-Image Translation (Part 1). 2022. Available online: https://pyimg.co/7vh0s (accessed on 12 December 2023).
- Xu, M.; Sook, Y.; Alvaro, F.; Sun, P.D. A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognit. 2023, 137, 109347–109358. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. A Universal Image Quality Index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Nilsson, J.; Akenine-Möller, T. Understanding SSIM. NVIDIA 2020. Available online: https://arxiv.org/pdf/2006.13846.pdf (accessed on 16 January 2024).
- Søgaard, J.; Krasula, L.; Shahid, M.; Temel, D.; Brunnstrom, K.; Razaak, M. Applicability of Existing Objective Metrics of Perceptual Quality for Adaptive Video Streaming. In Proceedings of the Society for Imaging Science and Technology IS&T International Symposium on Electronic Imaging, San Francisco, CA, USA, 14–18 February 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Abdelhack, M. A Comparison of Data Augmentation Techniques in Training Deep Neural Networks for Satellite Image Classification. 2020. Available online: https://arxiv.org/pdf/2003.13502.pdf (accessed on on 22 January 2024).
SSIM | Q | PSNR | ||||
---|---|---|---|---|---|---|
Sentinel-2 Satellite Images | Ori. SFSI versus Ori. SSI (%) | Ori. SFSI versus Gen. SFI (%) | Ori. SFSI versus Ori. SSI (%) | Ori. SFSI versus Gen. SFI (%) | Ori. SFSI versus Ori. SSI (%) | Ori. SFSI versus Gen. SFI (%) |
SAT-Img1 | 75.10 | 84.10 | 76.10 | 92.00 | 16.40 | 23.20 |
SAT-Img2 | 80.10 | 85.20 | 81.20 | 91.10 | 17.00 | 25.06 |
SAT-Img3 | 81.40 | 86.20 | 82.20 | 91.10 | 20.80 | 23.40 |
SAT-Img4 | 81.30 | 85.00 | 83.40 | 88.70 | 13.40 | 19.30 |
SAT-Img5 | 83.60 | 95.10 | 84.10 | 94.70 | 18.40 | 28.50 |
SAT-Img6 | 75.10 | 77.30 | 73.10 | 88.10 | 12.10 | 18.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluwadare, T.S.; Chen, D.; Oluwafemi, O.; Babadi, M.; Hossain, M.; Ibukun, O. Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach. Remote Sens. 2024, 16, 2352. https://doi.org/10.3390/rs16132352
Oluwadare TS, Chen D, Oluwafemi O, Babadi M, Hossain M, Ibukun O. Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach. Remote Sensing. 2024; 16(13):2352. https://doi.org/10.3390/rs16132352
Chicago/Turabian StyleOluwadare, Temitope Seun, Dongmei Chen, Olawale Oluwafemi, Masoud Babadi, Mohammad Hossain, and Oluwaseun Ibukun. 2024. "Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach" Remote Sensing 16, no. 13: 2352. https://doi.org/10.3390/rs16132352
APA StyleOluwadare, T. S., Chen, D., Oluwafemi, O., Babadi, M., Hossain, M., & Ibukun, O. (2024). Reconstructing Snow-Free Sentinel-2 Satellite Imagery: A Generative Adversarial Network (GAN) Approach. Remote Sensing, 16(13), 2352. https://doi.org/10.3390/rs16132352