Extracting Wetlands in Coastal Louisiana from the Operational VIIRS and GOES-R Flood Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
- VIIRS five-day composite flood maps, indicating floodwater fractions from 1 January 2021 to 31 December 2022. This data since October 2019 is archived at George Mason University (https://jpssflood.gmu.edu, accessed on 24 September 2024). The data in four formats, NetCDF, PNG, Shapefile, and TIF, can be available.
- GOES-R ABI flood maps, indicating floodwater fractions from 1/1/2021 to 12/31/2022. These data from October 2019 have been archived at George Mason University (https://jpssflood.gmu.edu, accessed on 24 September 2024).
- The Sentinel-1-based flood extent product from the operational Copernicus Global Flood Mapping system (https://global-flood.emergency.copernicus.eu/glofas-forecasting/, accessed on 24 September 2024).
- SAR-based flood mapping data provided by Microsoft [48].
2.3. Methods
2.3.1. Data Pre-Processing
2.3.2. Change Detection Analysis
2.3.3. Extracting Non-Hazard Floodwaters Due to Wetlands in VIIRS and GOES-R ABI Flood Products
2.3.4. Long-Time Flood Probability
2.3.5. Comparison with Change Detection Analysis
3. Results
3.1. Extraction of Wetlands from the VIIRS Five-Day Composite Flood Map
3.2. Identification of Non-Hazard Floodwaters Due to Wetlands in GOES-R ABI Flood Products
3.3. Comparison with the Sentinel-1-Based Flood Mapping from the Operational Copernicus Global Flood Mapping System
3.4. Cross-Evaluation of the Model with Sar-Based Flood Mapping by Microsoft
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Sun, D.; Yu, Y.; Goldberg, M.D. Deriving water fraction and flood maps from MODIS images using a decision tree approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 814–825. [Google Scholar] [CrossRef]
- Sun, D.; Yu, Y.; Zhang, R.; Li, S.; Goldberg, M.D. Towards operational automatic flood detection using EOS/MODIS data. Photogramm. Eng. Remote Sens. 2012, 78, 637–646. [Google Scholar] [CrossRef]
- Li, S.; Sun, D.L.; Yu, Y.; Csiszar, Y.; Stefanidis, A.; Goldberg, M.D. A New Short-wave Infrared (SWIR) Method for Quantitative Water Fraction Derivation and Evaluation with EOS/MODIS and Landsat/TM data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1852–1862. [Google Scholar] [CrossRef]
- Li, S.; Sun, D.; Goldberg, M.D.; Sjoberg, B.; Santek, D.; Hoffman, J.P.; DeWeese, M.; Restrepo, P.; Lindsey, S.; Holloway, E. Automatic near real-time flood detection using Suomi-NPP/VIIRS data. Remote Sens. Environ. 2018, 204, 672–689. [Google Scholar] [CrossRef]
- Li, S.; Sun, D.; Goldberg, M.D.; Sjoberg, B.; Satya, K.; Lindsey, D.; Hoffman, J.P.; DeWeese, M.; Connelly, B.; Mckee, P.; et al. A downscaling model for derivation of 3-D flood products from VIIRS imagery and SRTM/DEM. ISPRS J. Photogramm. Remote. Sens. 2022, 192, 279–298. [Google Scholar] [CrossRef]
- Sharifi, A.; Kalin, L.; Hantush, M.M.; Isik, S. Wetlands: Earth’s Kidneys; Lamar, J., Lockaby, B.G., Eds.; Auburn Speaks; Auburn University: Auburn, AL, USA, 2013; pp. 140–143. [Google Scholar]
- EPA: Term. Available online: https://www.epa.gov/cwa-404/how-wetlands-are-defined-and-identified-under-cwa-section-404 (accessed on 24 May 2024).
- Barducci, A.; Guzzi, D.; Marcoionni, P.; Pippi, I. Aerospace wetland monitoring by hyperspectral imaging sensors: A case study in the coastal zone of San Rossore Natural Park. J. Environ. Manag. 2009, 90, 2278–2286. [Google Scholar] [CrossRef]
- Neyland, R. The Effects of Hurricane Rita on the Aquatic Vascular Flora in a Large Fresh-Water Marsh in Cameron Parish, Louisiana. Castanea 2007, 72, 1–7. [Google Scholar] [CrossRef]
- Wang, Y. Seasonal Change in the Extent of Inundation on Floodplains Detected by JERS-1 Synthetic Aperture Radar Data. Int. J. Remote Sens. 2004, 25, 2497–2508. [Google Scholar] [CrossRef]
- Kiage, L.; Walker, N.; Balasubramanian, S.; Babin, A.; Barras, J. Applications of Radarsat-1 Synthetic Aperture Radar Imagery to Assess Hurricane-Related Flooding of Coastal Louisiana. Int. J. Remote Sens. 2005, 26, 5359–5380. [Google Scholar] [CrossRef]
- Ramsey, E., III; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D. Monitoring Duration and Extent of Storm Surge Flooding Along the Louisiana Coast with Envisat ASAR Data. IEEE Trans. Geosci. Remote Sens. 2011, 4, 387–399. [Google Scholar]
- Keddy, P.A. Wetland Ecology: Principles and Conservation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; p. 497. [Google Scholar]
- Keddy, P.A.; Campbell, D.; McFalls, T.; Shaffer, G.; Moreau, R.; Dranguet, C.; Heleniak, R. The wetlands of lakes Pontchartrain and Maurepas: Past, present and future. Environ. Rev. 2007, 15, 43–77. [Google Scholar] [CrossRef]
- Lamb, B.T.; Tzortziou, M.A.; McDonald, K.C. A Fused Radar–Optical Approach for Mapping Wetlands and Deepwaters of the Mid–Atlantic and Gulf Coast Regions of the United States. Remote Sens. 2021, 13, 2495. [Google Scholar] [CrossRef]
- Philipson, W.R. Manual of Photographic Interpretation, 2nd ed.; American Society for Photogrammetry and Remote Sensing: Falls Church, VA, USA, 1996; 2440p. [Google Scholar]
- Bartlett, D.S.; Klemas, V. In situ spectral reflectance studies of tidal wetland grasses. Photogramm. Eng. Remote Sens. 1981, 47, 1695–1703. [Google Scholar]
- Kearney, M.S.; Rogers, A.S.; Townshend, J.R.G.; Rizzo, E.; Stutzer, D.; Stevenson, J.C.; Sundborg, K. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos. Trans. Am. Geophys. Union 2002, 83, 173. [Google Scholar] [CrossRef]
- Kulawardhana, R.W.; Thenkabail, P.S.; Vithanage, J.; Biradar, C.; Islam, M.A.A.; Gunasinghe, S.; Alankara, R. Evaluation of the wetland mapping methods using Landsat ETM+ and SRTM data. J. Spat. Hydrol. 2007, 7, 62–96. [Google Scholar]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Frohn, R.C.; Reif, M.; Lane, C.; Autrey, B. Satellite remote sensing of isolated wetlands using object-oriented classification of Landsat-7 data. Wetlands 2009, 29, 931–941. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Barras, J.A.A.; Steyer, G.D.D.; Sleavin, W.; Fischer, M.; Beck, H.; Trahan, N.; Griffin, B.; Heckman, D.; Cathe-rine, S.; et al. Land Area Change in Coastal Louisiana from 1932 to 2010. U.S. Geol. Surv. Sci. Investig. 2011, 3164, 12. [Google Scholar]
- Phinn, S.R.; Menges, C.; Hill, G.J.E.; Standford, M. Optimizing remotely sensed solutions for monitoring, modeling, and managing coastal environments. Remote Sens. Environ. 2000, 73, 117–132. [Google Scholar] [CrossRef]
- Elmore, A.H. Remote Sensing of Tidal Freshwater Marsh Elevation, Channels, and Vegetation Structure. Master’s Thesis, Uni-versity of Maryland, College Park, MA, USA, 2008. Supervised by Professor Katharina Engelhardt. [Google Scholar]
- Campbell, A.; Wang, Y.; Christiano, M.; Stevens, S. Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A decade of change from restoration to hurricane sandy. Remote Sens. 2017, 9, 131. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Wilson, E.H.; Barrett, N.; Civco, D.L.; Prisloe, S.; Hurd, J.D.; Chadwick, C. Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sens. Environ. 2008, 112, 4048–4060. [Google Scholar] [CrossRef]
- Hurd, J.D.; Civco, D.L.; Gilmore, M.S.; Prisloe, S.; Wilson, E.H. Coastal marsh characterization using satellite remote sensing and in situ radiometry data: Preliminary results. In Proceedings of the American Society of Photogrammetry and Remote Sensing 2005 Annual Conference, Baltimore, MD, USA, 7–11 March 2005. [Google Scholar]
- Klemas, V. Using Remote Sensing to Select and Monitor Wetland Restoration Sites: An Overview. J. Coast. Res. 2013, 289, 958–970. [Google Scholar] [CrossRef]
- Langley, J.A.; Megonigal, J.P. Field-based radiometry to estimate tidal marsh plant growth in response to elevated CO2 and nitrogen addition. Wetlands 2012, 32, 571–578. [Google Scholar] [CrossRef]
- Lopes, C.L.; Mendes, R.; Caçador, I.; Dias, J.M. Assessing salt marsh extent and condition changes with 35 years of Landsat imagery: Tagus Estuary case study. Remote Sens. Environ. 2020, 247, 111939. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Lamb, B.T.; Tzortziou, M.A.; McDonald, K.C. Evaluation of Approaches for Mapping Tidal Wetlands of the Chesapeake and Delaware Bays. Remote Sens. 2019, 11, 2366. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the Google Earth Engine cloud computing platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef]
- Jones, J.W. Improved automated detection of subpixel-scale inundation-revised Dynamic Surface Water Extent (DSWE) partial surface water tests. Remote Sens. 2019, 11, 374. [Google Scholar] [CrossRef]
- O’Connell, J.L.; Mishra, D.R.; Cotten, D.L.; Wang, L.; Alber, M. The Tidal Marsh Inundation Index (TMII): An inundation filter to flag flooded pixels and improve MODIS tidal marsh vegetation time-series analysis. Remote Sens. Environ. 2017, 201, 34–46. [Google Scholar] [CrossRef]
- Brisco, B.; Kapfer, M.; Hirose, T.; Tedford, B.; Liu, J. Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Can. J. Remote Sens. 2011, 37, 82–92. [Google Scholar] [CrossRef]
- Brisco, B.; Ahern, F.; Murnaghan, K.; White, L.; Canisus, F.; Lancaster, P. Seasonal change in wetland coherence as an aid to wetland monitoring. Remote Sens. 2017, 9, 158. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Bourgeau-Chavez, L.L. Monitoring south Florida wetlands using ERS-1 SAR imagery. Photogramm. Eng. Remote Sens. 1997, 63, 281–291. [Google Scholar]
- Lang, M.W.; Kasischke, E.S. Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s coastal plain, USA. IEEE Trans. Geosci. Remote Sens. 2008, 46, 535–546. [Google Scholar] [CrossRef]
- Ramsey, E.; Werle, D.; Suzuoki, Y.; Rangoonwala, A.; Lu, Z. Limitations and Potential of Satellite Imagery to Monitor Environmental Response to Coastal Flooding. J. Coast. Res. 2012, 280, 457–476. [Google Scholar] [CrossRef]
- Kim, J.-W.; Lu, Z.; Jones, J.W.; Shum, C.K.; Lee, H.; Jia, Y. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sens. Environ. 2014, 150, 66–81. [Google Scholar] [CrossRef]
- Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google earth engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef]
- Slagter, B.; Tsendbazar, N.-E.; Vollrath, A.; Reiche, J. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [Google Scholar] [CrossRef]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated extraction of surface water extent from Sentinel-1 data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef]
- Carroll, M.; Townshend, J.; DiMiceli, C.; Noojipady, P.; Sohlberg, R. A New Global Raster Water Mask at 250 Meter Resolution. Int. J. Dig. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Copernicus Emergency Management Service Global Flood Monitoring Product User Manual. 2020. Available online: https://emergency.copernicus.eu (accessed on 24 September 2024).
- Misra, A.; White, K.; Nsutezo, S.F.; Lavista, J. Mapping Global Floods with 10 Years of Satellite Radar Data. To be submitted.
- Chen, Y.; Huang, C.; Ticehurst, C.; Merrin, L.; Thew, P. An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping. Wetlands 2013, 33, 823–835. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef]
- Sun, D.; Yang, T.; Li, S.; Goldberg, M.; Kalluri, S.; Helfrich, S.; Sjoberg, B.; Zhou, L.; Zhang, Q.; Straka, W.; et al. Hazard or Non-Hazard Flood: Post Analysis for Paddy Rice, Wetland, and Other Potential Non-Hazard Flood Extraction from the VIIRS Flood. ISPRS J. Photogramm. Remote. Sens. 2024, 209, 415–431. [Google Scholar] [CrossRef]
- Li, S.; Sun, D.; Yu, Y. Automatic cloud-shadow removal from flood/standing water maps using MSG/SEVIRI imagery. Int. J. Remote Sens. 2013, 34, 5487–5502. [Google Scholar] [CrossRef]
- Li, S.; Sun, D.; Goldberg, M.D.; Sjoberg, W. Object-based automatic terrain shadow removal from SNPP/VIIRS flood maps. Int. J. Remote Sens. 2015, 36, 5504–5522. [Google Scholar] [CrossRef]
- Huang, C.; Zhan, C.; Csiszar, I. VIIRS Surface Type Algorithm Theoretical Basis Document. 2023; 61p. Available online: https://www.star.nesdis.noaa.gov/JPSS/documents/ATBD/ATBD_VIIRS-SurfaceType_v2.2.pdf (accessed on 24 September 2024).
- Belward, A.; Loveland, T. The DIS 1 km land cover data set. Glob. Chang. News Lett. 1996, 27, 7–9. [Google Scholar]
- Hurricane Ida. Available online: https://en.wikipedia.org/wiki/Hurricane_Ida (accessed on 24 September 2024).
- Joint VIIRS-ABI Floodwater Fraction Map Products. Available online: https://gis-fema.hub.arcgis.com/apps/8332b01063a949399ba846e93e6ee26f/explore (accessed on 24 September 2024).
- The GFM Product Definition Document. Available online: https://extwiki.eodc.eu/GFM/PDD (accessed on 24 September 2024).
- Bernard, T.G.; Davy, P.; Lague, D. Hydro-Geomorphic Metrics for High Resolution Fluvial Landscape Analysis. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006535. [Google Scholar]
- Costabile, P.; Costanzo, C.; Lombardo, M.; Shavers, E.; Stanislawski, L.V. Unravelling spatial heterogeneity of inundation pattern domains for 2D analysis of fluvial landscapes and drainage networks. J. Hydrol. 2024, 632, 130728. [Google Scholar] [CrossRef]
Classification from This Study | Flood by Hurricane Ida | Wetlands |
---|---|---|
Classified as a hazard flood | 11,962 (TP) | 2496 (FP) |
Classified as wetlands | 5187 (FN) | 293,555 (TN) |
Classification from This Study | Flood by Hurricane Ida | Wetlands |
---|---|---|
Classified as a hazard flood | 3677 (TP) | 410 (FP) |
Classified as wetlands | 1833 (FN) | 20,704 (TN) |
Classification from This Study | Flood by Hurricane Ida | Wetlands |
---|---|---|
Classified as a hazard flood | 622 (TP) | 16 (FP) |
Classified as wetlands | 394 (FN) | 2092 (TN) |
VIIRS Classification | Hurricane Flood from SAR by Microsoft | False positives (Wetlands) from SAR by Microsoft |
---|---|---|
Classified as hurricane flood | 455 (TP) | 3687 (FP) |
Classified as wetlands | 1161 (FN) | 22,321 (TN) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Sun, D.; Li, S.; Kalluri, S.; Zhou, L.; Helfrich, S.; Yuan, M.; Zhang, Q.; Straka, W.; Maggioni, V.; et al. Extracting Wetlands in Coastal Louisiana from the Operational VIIRS and GOES-R Flood Products. Remote Sens. 2024, 16, 3769. https://doi.org/10.3390/rs16203769
Yang T, Sun D, Li S, Kalluri S, Zhou L, Helfrich S, Yuan M, Zhang Q, Straka W, Maggioni V, et al. Extracting Wetlands in Coastal Louisiana from the Operational VIIRS and GOES-R Flood Products. Remote Sensing. 2024; 16(20):3769. https://doi.org/10.3390/rs16203769
Chicago/Turabian StyleYang, Tianshu, Donglian Sun, Sanmei Li, Satya Kalluri, Lihang Zhou, Sean Helfrich, Meng Yuan, Qingyuan Zhang, William Straka, Viviana Maggioni, and et al. 2024. "Extracting Wetlands in Coastal Louisiana from the Operational VIIRS and GOES-R Flood Products" Remote Sensing 16, no. 20: 3769. https://doi.org/10.3390/rs16203769
APA StyleYang, T., Sun, D., Li, S., Kalluri, S., Zhou, L., Helfrich, S., Yuan, M., Zhang, Q., Straka, W., Maggioni, V., & Miralles-Wilhelm, F. (2024). Extracting Wetlands in Coastal Louisiana from the Operational VIIRS and GOES-R Flood Products. Remote Sensing, 16(20), 3769. https://doi.org/10.3390/rs16203769