Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification
Abstract
:1. Introduction
- A novel shared scaling factor-based debiasing quantization method is proposed to reduce the hardware resource overheads of A2NNs while minimizing performance degradation, which includes a POT-based shared scaling factor quantization scheme and an MDD quantization strategy.
- A POT-based shared scaling factor quantization scheme is proposed to quantize the adder filters in the A2NN. The proposed quantization scheme converts the input activations and weights of the adder filters from floating-point to integer type, thereby transforming the floating-point addition operations in the adder filters into hardware-friendly integer addition and bit-shift operations.
- An MDD quantization strategy combining the WD and FD strategies is proposed to effectively prevent the decrease in accuracy of Q-A2NNs due to the deviations in weights and features during quantization. The WD strategy mitigates the performance degradation of Q-A2NNs by correcting deviations in the quantized weight distribution. It re-defines the weight scaling factor when the weight distribution is skewed and spans considerably beyond the target quantization range, ensuring an adequate quantization range for weights densely distributed near zero. The FD strategy enhances the classification performance of Q-A2NNs by minimizing deviations among the output features across layers, thus aligning the output features of the intermediate and last layers in the Q-A2NN with those of the corresponding layers in the A2NN, reducing quantization errors in a layer-by-layer manner, and improving the feature extraction ability of the Q-A2NN.
2. Related Works
2.1. Remote Sensing Scene Classification
2.2. Quantization
3. Preliminary Knowledge
3.1. All-Adder Neural Network
3.2. Quantization Scheme for CNNs
4. Method
4.1. POT-Based Shared Scaling Factor Quantization Scheme
4.2. Weight-DeBiasing Strategy
4.3. Feature-DeBiasing Strategy
5. Experiments
5.1. Data Set Description and Pre-Processing
5.2. Evaluation Metrics
5.3. Experimental Settings
5.3.1. Network
5.3.2. Hyperparameter Settings
5.4. Hyperparameter Analysis
5.5. Comparison with Other Approaches
5.6. Ablation Studies
5.7. Visualization Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Hong, D.; Chanussot, J. Convolutional neural networks for multimodal remote sensing data classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5517010. [Google Scholar] [CrossRef]
- Du, X.; Zheng, X.; Lu, X.; Doudkin, A.A. Multisource remote sensing data classification with graph fusion network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10062–10072. [Google Scholar] [CrossRef]
- Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Ghamisi, P. Transferring CNN With Adaptive Learning for Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5533918. [Google Scholar] [CrossRef]
- Tong, W.; Chen, W.; Han, W.; Li, X.; Wang, L. Channel-attention-based DenseNet network for remote sensing image scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4121–4132. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar] [CrossRef]
- Grøtte, M.E.; Birkeland, R.; Honoré-Livermore, E.; Bakken, S.; Garrett, J.L.; Prentice, E.F.; Sigernes, F.; Orlandić, M.; Gravdahl, J.T.; Johansen, T.A. Ocean color hyperspectral remote sensing with high resolution and low latency—The hypso-1 cubesat mission. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1000619. [Google Scholar] [CrossRef]
- Caba, J.; Díaz, M.; Barba, J.; Guerra, R.; de la Torre, J.A.; López, S. Fpga-based on-board hyperspectral imaging compression: Benchmarking performance and energy efficiency against gpu implementations. Remote Sens. 2020, 12, 3741. [Google Scholar] [CrossRef]
- Wiehle, S.; Mandapati, S.; Günzel, D.; Breit, H.; Balss, U. Synthetic aperture radar image formation and processing on an MPSoC. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5226814. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhao, B.; Chanussot, J.; Hong, D.; Yao, J.; Gao, L. Progress and challenges in intelligent remote sensing satellite systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1814–1822. [Google Scholar] [CrossRef]
- Fu, C.; Cao, Z.; Li, Y.; Ye, J.; Feng, C. Onboard real-time aerial tracking with efficient Siamese anchor proposal network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5606913. [Google Scholar] [CrossRef]
- Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up convolutional neural networks with low rank expansions. arXiv 2014, arXiv:1405.3866. [Google Scholar]
- Zhang, X.; Zou, J.; Ming, X.; He, K.; Sun, J. Efficient and accurate approximations of nonlinear convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1984–1992. [Google Scholar]
- Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA, 7–12 December 2015; Volume 28. [Google Scholar]
- Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the International Conference on Machine Learning, Lille, France, 6 July–11 July 2015; pp. 1737–1746. [Google Scholar]
- Lin, S.; Ji, R.; Chen, C.; Tao, D.; Luo, J. Holistic cnn compression via low-rank decomposition with knowledge transfer. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2889–2905. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, N. Data-driven sparse structure selection for deep neural networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 304–320. [Google Scholar]
- Zhang, Y.; Zhen, Y.; He, Z.; Yen, G.G. Improvement of efficiency in evolutionary pruning. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Liu, Y.; Cao, J.; Li, B.; Yuan, C.; Hu, W.; Li, Y.; Duan, Y. Knowledge distillation via instance relationship graph. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7096–7104. [Google Scholar]
- Zhuang, B.; Shen, C.; Tan, M.; Liu, L.; Reid, I. Towards effective low-bitwidth convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7920–7928. [Google Scholar]
- Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713. [Google Scholar]
- Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 10–14. [Google Scholar]
- Wang, Y.; Huang, M.; Han, K.; Chen, H.; Zhang, W.; Xu, C.; Tao, D. AdderNet and its minimalist hardware design for energy-efficient artificial intelligence. arXiv 2021, arXiv:2101.10015. [Google Scholar]
- Valueva, M.V.; Nagornov, N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Xu, C.; Shi, B.; Xu, C.; Tian, Q.; Xu, C. AdderNet: Do we really need multiplications in deep learning? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1468–1477. [Google Scholar]
- Zhang, N.; Wang, G.; Wang, J.; Chen, H.; Liu, W.; Chen, L. All Adder Neural Networks for On-board Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5607916. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, B.; Jiang, W.; Ha, Y.; Hu, M.; Zhao, W. WSQ-AdderNet: Efficient Weight Standardization based Quantized AdderNet FPGA Accelerator Design with High-Density INT8 DSP-LUT Co-Packing Optimization. In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, San Diego, CA, USA, 29 October–3 November 2022; pp. 1–9. [Google Scholar]
- Li, H.; Gu, H.; Han, Y.; Yang, J. Object-oriented classification of high-resolution remote sensing imagery based on an improved colour structure code and a support vector machine. Int. J. Remote Sens. 2010, 31, 1453–1470. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhong, Y.; Zhao, B.; Xia, G.S.; Zhang, L. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 747–751. [Google Scholar] [CrossRef]
- Zhao, B.; Zhong, Y.; Xia, G.S.; Zhang, L. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2108–2123. [Google Scholar] [CrossRef]
- Wang, S.; Guan, Y.; Shao, L. Multi-granularity canonical appearance pooling for remote sensing scene classification. IEEE Trans. Image Process. 2020, 29, 5396–5407. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, W.; Xiong, Z.; Li, X. Looking closer at the scene: Multiscale representation learning for remote sensing image scene classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 1414–1428. [Google Scholar] [CrossRef]
- Sun, H.; Li, S.; Zheng, X.; Lu, X. Remote sensing scene classification by gated bidirectional network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 82–96. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Ma, L.; Chen, L.; Gong, X.; Liu, W. Sphere Loss: Learning Discriminative Features for Scene Classification in a Hyperspherical Feature Space. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5601819. [Google Scholar] [CrossRef]
- Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision transformers for remote sensing image classification. Remote Sens. 2021, 13, 516. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Sha, Z.; Li, J. MITformer: A multiinstance vision transformer for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6510305. [Google Scholar] [CrossRef]
- Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; Van Baalen, M.; Blankevoort, T. A white paper on neural network quantization. arXiv 2021, arXiv:2106.08295. [Google Scholar]
- Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing 2021, 461, 370–403. [Google Scholar] [CrossRef]
- Yuan, Z.; Xue, C.; Chen, Y.; Wu, Q.; Sun, G. Ptq4vit: Post-training quantization for vision transformers with twin uniform quantization. In Proceedings of the Computer Vision—ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Part XII. Springer: Cham, Switzerland, 2022; pp. 191–207. [Google Scholar]
- Li, Z.; Li, X.; Yang, L.; Zhao, B.; Song, R.; Luo, L.; Li, J.; Yang, J. Curriculum temperature for knowledge distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 1504–1512. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Sheng, G.; Yang, W.; Xu, T.; Sun, H. High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 2012, 33, 2395–2412. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, X.; Luo, X.; Han, J.; Cao, X.; Zhang, J. Variational Self-Distillation for Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5627313. [Google Scholar] [CrossRef]
- Xu, K.; Deng, P.; Huang, H. Vision Transformer: An Excellent Teacher for Guiding Small Networks in Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5618715. [Google Scholar] [CrossRef]
- Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA, 7–12 December 2015; Volume 28. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Wei, X.; Chen, H.; Liu, W.; Xie, Y. Mixed-precision quantization for CNN-based remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1721–1725. [Google Scholar] [CrossRef]
- Wei, X.; Liu, W.; Chen, L.; Ma, L.; Chen, H.; Zhuang, Y. FPGA-based hybrid-type implementation of quantized neural networks for remote sensing applications. Sensors 2019, 19, 924. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Data Set | WHU | UCM | SIRI-WHU | RSSCN7 | AID |
---|---|---|---|---|---|
Classes | 19 | 21 | 12 | 7 | 30 |
Total images | 1005 | 2100 | 2400 | 2800 | 10,000 |
Images per class | ∼50 | 100 | 200 | 400 | 220∼420 |
Training sample ratio | 0.8 | 0.8 | 0.4 | 0.2 | 0.2 |
Testing sample ratio | 0.2 | 0.2 | 0.6 | 0.8 | 0.8 |
Resolution (m) | up to 0.5 | 0.3 | 2 | - | 0.5∼8 |
Image size | 600 × 600 | 256 × 256 | 200 × 200 | 400 × 400 | 600 × 600 |
Data source | Google Earth | USGS | Google Earth | Google Earth | Google Earth |
Data Set | Backbone | Precision | Basic Network | ||||||
---|---|---|---|---|---|---|---|---|---|
CNN [28] | Q-CNN [54,55] | BNN [52] | AdderNet [27] | A2NN [28] | Q-A2NN (POT) (Ours) | Q-A2NN (SSDQ) (Ours) | |||
UCM | ResNet-18 | Floating-point/Binarize * | 96.00 ± 0.66 | 95.95 | 50.67 ± 0.92 | 94.14 ± 0.93 | 95.62 ± 0.27 | 95.71 | 95.71 |
8-bit | - | 95.79 ± 0.14 | - | - | - | 94.29 ± 0.24 | 95.40 ± 0.14 | ||
6-bit | - | 95.56 ± 0.14 | - | - | - | 88.02 ± 0.27 | 95.40 ± 0.14 | ||
4-bit | - | 95.32 ± 0.14 | - | - | - | 11.98 ± 1.79 | 95.16 ± 0.14 | ||
VGGNet-11 | Floating-point/Binarize | 96.10 ± 0.89 | 96.67 | 89.09 ± 0.57 | 94.67 ± 0.46 | 96.76 ± 0.55 | 96.9 | 96.9 | |
8-bit | - | 97.14 ± 0 | - | - | - | 95.48 ± 0 | 97.14 ± 0.24 | ||
6-bit | - | 97.06 ± 0.14 | - | - | - | 67.54 ± 0.60 | 96.51 ± 0.14 | ||
4-bit | - | 94.68 ± 0.50 | - | - | - | 10.16 ± 0.90 | 94.84 ± 0.28 | ||
WHU | ResNet-18 | Floating-point/Binarize | 92.58 ± 0.87 | 91.22 | 60.29 ± 1.12 | 87.22 ± 0.63 | 90.24 ± 0.49 | 90.73 | 90.73 |
8-bit | - | 90.73 ± 0 | - | - | - | 90.40 ± 0.28 | 92.20 ± 0 | ||
6-bit | - | 90.24 ± 0 | - | - | - | 88.45 ± 0.28 | 91.71 ± 0 | ||
4-bit | - | 89.60 ± 0.29 | - | - | - | 10.73 ± 0 | 90.73 ± 0 | ||
VGGNet-11 | Floating-point/Binarize | 91.90 ± 0.74 | 91.71 | 82.73 ± 1.56 | 89.46 ± 0.74 | 92.30 ± 0.80 | 92.2 | 92.2 | |
8-bit | - | 90.57 ± 0.28 | - | - | - | 90.89 ± 0.28 | 91.71 ± 0 | ||
6-bit | - | 90.24 ± 0 | - | - | - | 80.49 ± 0.49 | 91.22 ± 0 | ||
4-bit | - | 90.24 ± 0.97 | - | - | - | 9.76 ± 0 | 91.22 ± 0.49 | ||
RSSCN7 | ResNet-18 | Floating-point/Binarize | 84.16 ± 0.60 | 83.71 | 62.70 ± 0.49 | 79.98 ± 0.98 | 82.42 ± 0.60 | 82.9 | 82.9 |
8-bit | - | 83.52 ± 0.63 | - | - | - | 83.20 ± 0.09 | 83.36 ± 0.05 | ||
6-bit | - | 83.54 ± 0.09 | - | - | - | 70.61 ± 0.14 | 83.18 ± 0.11 | ||
4-bit | - | 81.85 ± 0.16 | - | - | - | 20.64 ± 0.20 | 81.40 ± 0.18 | ||
VGGNet-11 | Floating-point/Binarize | 82.12 ± 0.42 | 82.19 | 78.03 ± 0.62 | 79.98 ± 0.82 | 83.29 ± 0.45 | 83.08 | 83.08 | |
8-bit | - | 82.78 ± 0.07 | - | - | - | 83.62 ± 0.28 | 83.91 ± 0.14 | ||
6-bit | - | 82.66 ± 0.05 | - | - | - | 54.40 ± 0.49 | 83.96 ± 0.09 | ||
4-bit | - | 80.01 ± 0.29 | - | - | - | 17.49 ± 0 | 81.09 ± 0.30 | ||
AID | ResNet-18 | Floating-point/Binarize | 85.29 ± 0.56 | 84.74 | 42.67 ± 0.22 | 77.58 ± 0.63 | 79.15 ± 0.32 | 78.85 | 78.85 |
8-bit | - | 84.75 ± 0.03 | - | - | - | 79.33 ± 0.03 | 79.55 ± 0.10 | ||
6-bit | - | 84.75 ± 0.03 | - | - | - | 69.47 ± 0.54 | 79.27 ± 0.13 | ||
4-bit | - | 83.07 ± 0.03 | - | - | - | 5.64 ± 1.65 | 76.60 ± 0.05 | ||
VGGNet-11 | Floating-point/Binarize | 83.28 ± 0.59 | 83.06 | 66.65 ± 0.85 | 81.28 ± 0.65 | 83.46 ± 0.23 | 83.36 | 83.36 | |
8-bit | - | 83.30 ± 0.08 | - | - | - | 84.49 ± 0.01 | 83.92 ± 0.07 | ||
6-bit | - | 83.13 ± 0.08 | - | - | - | 72.00 ± 0.03 | 83.87 ± 0.11 | ||
4-bit | - | 80.29 ± 0.07 | - | - | - | 5.14 ± 0.51 | 78.06 ± 0.09 | ||
SIRI-WHU | ResNet-18 | Floating-point/Binarize | 91.90 ± 0.24 | 91.94 | 57.07 ± 1.45 | 86.22 ± 0.91 | 89.61 ± 0.24 | 89.86 | 89.86 |
8-bit | - | 91.74 ± 0.07 | - | - | - | 89.65 ± 0.07 | 89.81 ± 0.08 | ||
6-bit | - | 91.58 ± 0.04 | - | - | - | 76.78 ± 0.14 | 89.05 ± 0.04 | ||
4-bit | - | 89.74 ± 0.15 | - | - | - | 16.41 ± 0.87 | 87.59 ± 0.23 | ||
VGGNet-11 | Floating-point/Binarize | 87.53 ± 0.40 | 87.64 | 80.56 ± 0.21 | 86.68 ± 0.73 | 88.80 ± 0.61 | 88.33 | 88.33 | |
8-bit | - | 87.78 ± 0 | - | - | - | 89.17 ± 0.07 | 89.05 ± 0.23 | ||
6-bit | - | 87.45 ± 0.11 | - | - | - | 31.69 ± 1.51 | 89.40 ± 0.35 | ||
4-bit | - | 83.89 ± 0.24 | - | - | - | 11.39 ± 0.84 | 85.86 ± 0.21 |
Backbone | Basic Network | Computational Overhead | Memory Size * | ||||||
---|---|---|---|---|---|---|---|---|---|
Major Computational Layers | Other Layers | OPs | Params | Major Computational Layers | Other Layers | ||||
Add | Mul | XNOR | MACs | ||||||
ResNet-18 | CNN [28] | 1.81 G | 1.81 G | 0 | 4.98 M | 3.63 G | 42.79 MB | 42.66 MB | 0.04 MB |
AdderNet [27] | 3.56 G | 59.01 M | 0 | 4.98 M | 3.63 G | 42.79 MB | 42.66 MB | 0.04 MB | |
A2NN [28] | 3.62 G | 0 | 0 | 4.98 M | 3.63 G | 42.79 MB | 42.66 MB | 0.04 MB | |
BNN [52] | 1.81 G | 0 | 1.81 G | 4.98 M | 3.63 G | 1.37 MB | 1.33 MB | 0.04 MB | |
Q-CNN-8bit [54,55] | 1.81 G | 1.81 G | 0 | 4.98 M | 3.63 G | 10.70 MB | 10.66 MB | 0.04 MB | |
Q-CNN-6bit [54,55] | 1.81 G | 1.81 G | 0 | 4.98 M | 3.63 G | 8.04 MB | 8.00 MB | 0.04 MB | |
Q-CNN-4bit [54,55] | 1.81 G | 1.81 G | 0 | 4.98 M | 3.63 G | 5.37 MB | 5.33 MB | 0.04 MB | |
Q-A2NN-8bit (POT) (ours) | 3.62 G | 0 | 0 | 4.98 M | 3.63 G | 10.70 MB | 10.66 MB | 0.04 MB | |
Q-A2NN-6bit (POT) (ours) | 3.62 G | 0 | 0 | 4.98 M | 3.63 G | 8.04 MB | 8.00 MB | 0.04 MB | |
Q-A2NN-4bit (POT) (ours) | 3.62 G | 0 | 0 | 4.98 M | 3.63 G | 5.37 MB | 5.33 MB | 0.04 MB | |
Q-A2NN-8bit (SSDQ) (ours) | 3.62 G | 0 | 0 | 4.98 M | 3.63 G | 10.70 MB | 10.66 MB | 0.04 MB | |
Q-A2NN-6bit (SSDQ) (ours) | 3.62 G | 0 | 0 | 4.98 M | 3.63 G | 8.04 MB | 8.00 MB | 0.04 MB | |
Q-A2NN-4bit (SSDQ) (ours) | 3.62 G | 0 | 0 | 4.98 M | 3.63 G | 5.37 MB | 5.33 MB | 0.04 MB | |
VGGNet-11 | CNN [28] | 7.49 G | 7.49 G | 0 | 14.85 M | 15.00 G | 35.24 MB | 35.22 MB | 0.02 MB |
AdderNet [27] | 14.93 G | 43.36 M | 0 | 14.85 M | 15.00 G | 35.24 MB | 35.22 MB | 0.02 MB | |
A2NN [28] | 14.97 G | 0 | 0 | 14.85 M | 15.00 G | 35.24 MB | 35.22 MB | 0.02 MB | |
BNN [52] | 7.49 G | 0 | 7.49 G | 14.85 M | 15.00 G | 1.12 MB | 1.10 MB | 0.02 MB | |
Q-CNN-8bit [54,55] | 7.49 G | 7.49 G | 0 | 14.85 M | 15.00 G | 8.83 MB | 8.81 MB | 0.02 MB | |
Q-CNN-6bit [54,55] | 7.49 G | 7.49 G | 0 | 14.85 M | 15.00 G | 6.62 MB | 6.60 MB | 0.02 MB | |
Q-CNN-4bit [54,55] | 7.49 G | 7.49 G | 0 | 14.85 M | 15.00 G | 4.42 MB | 4.40 MB | 0.02 MB | |
Q-A2NN-8bit (POT) (ours) | 14.97 G | 0 | 0 | 14.85 M | 15.00 G | 8.83 MB | 8.81 MB | 0.02 MB | |
Q-A2NN-6bit (POT) (ours) | 14.97 G | 0 | 0 | 14.85 M | 15.00 G | 6.62 MB | 6.60 MB | 0.02 MB | |
Q-A2NN-4bit (POT) (ours) | 14.97 G | 0 | 0 | 14.85 M | 15.00 G | 4.42 MB | 4.40 MB | 0.02 MB | |
Q-A2NN-8bit (SSDQ) (ours) | 14.97 G | 0 | 0 | 14.85 M | 15.00 G | 8.83 MB | 8.81 MB | 0.02 MB | |
Q-A2NN-6bit (SSDQ) (ours) | 14.97 G | 0 | 0 | 14.85 M | 15.00 G | 6.62 MB | 6.60 MB | 0.02 MB | |
Q-A2NN-4bit (SSDQ) (ours) | 14.97 G | 0 | 0 | 14.85 M | 15.00 G | 4.42 MB | 4.40 MB | 0.02 MB |
Backbone | Precision | Q-CNN [54,55] | Q-A2NN (POT) (Ours) | Q-A2NN (SSDQ) (Ours) |
---|---|---|---|---|
ResNet-18 | Floating-point | 92.13/91.23/91.27 | 91.81/90.91/90.95 | 91.81/90.91/90.95 |
8-bit | 91.57/90.75/90.76 | 92.10/90.43/90.83 | 93.08/92.31/92.47 | |
6-bit | 91.58/90.75/90.76 | 89.40/88.47/88.61 | 92.55/91.83/91.97 | |
4-bit | 90.54/89.74/89.79 | 4.40/10.37/5.0 | 91.38/90.96/91.0 | |
VGGNet-11 | Floating-point | 92.50/91.75/91.84 | 92.93/92.33/92.15 | 92.93/92.33/92.15 |
8-bit | 91.31/90.84/90.64 | 91.36/90.89/90.35 | 92.01/91.89/91.58 | |
6-bit | 90.52/90.35/90.27 | 83.79/80.30/80.13 | 91.90/91.41/91.22 | |
4-bit | 91.22/90.48/90.18 | 4.47/9.39/3.54 | 91.88/91.48/91.23 |
Data Set | Backbone | Basic Network | Precision | ||||||
---|---|---|---|---|---|---|---|---|---|
Floating-Point | 10-bit | 8-bit | 7-bit | 6-bit | 5-bit | 4-bit | |||
UCM | ResNet-18 | A2NN | 95.71 | - | - | - | - | - | - |
Q-A2NN (POT) | - | 95.56 ± 0.13 | 94.29 ± 0.24 | 92.54 ± 0.14 | 88.02 ± 0.27 | 11.98 ± 1.79 | 11.98 ± 1.79 | ||
Q-A2NN (POT + FD) | - | 95.95 ± 0 | 95.24 ± 0 | 94.13 ± 0.36 | 90.48 ± 1.03 | 40.32 ± 2.08 | 12.94 ± 1.45 | ||
Q-A2NN (POT + WD) | - | 95.56 ± 0.13 | 94.29 ± 0.24 | 94.29 ± 0.24 | 93.97 ± 0.60 | 94.05 ± 0.24 | 93.57 ± 0.24 | ||
Q-A2NN (SSDQ) | - | 95.95 ± 0.24 | 95.40 ± 0.14 | 95 ± 0 | 95.40 ± 0.14 | 95.24 ± 0 | 95.16 ± 0.14 | ||
VGGNet-11 | A2NN | 96.9 | - | - | - | - | - | - | |
Q-A2NN (POT) | - | 96.75 ± 0.13 | 95.48 ± 0 | 91.11 ± 0.14 | 67.54 ± 0.60 | 10.08 ± 0.72 | 10.16 ± 0.90 | ||
Q-A2NN (POT + FD) | - | 96.67 ± 0 | 96.98 ± 0.36 | 94.76 ± 0.24 | 87.03 ± 0.84 | 11.67 ± 2.16 | 10.24 ± 0.24 | ||
Q-A2NN (POT + WD) | - | 96.75 ± 0.13 | 95.48 ± 0 | 95.79 ± 0.14 | 96.35 ± 0.28 | 95.79 ± 0.14 | 94.60 ± 0.60 | ||
Q-A2NN (SSDQ) | - | 96.67 ± 0 | 97.14 ± 0.24 | 96.51 ± 0.14 | 96.51 ± 0.14 | 96.03 ± 0.14 | 94.84 ± 0.28 | ||
WHU | ResNet-18 | A2NN | 90.73 | - | - | - | - | - | - |
Q-A2NN (POT) | - | 90.57 ± 0.28 | 90.40 ± 0.28 | 91.38 ± 0.28 | 88.45 ± 0.28 | 72.68 ± 0 | 10.73 ± 0 | ||
Q-A2NN (POT + FD) | - | 91.87 ± 0.28 | 92.20 ± 0 | 92.68 ± 0.49 | 90.57 ± 0.74 | 79.51 ± 0.98 | 10.08 ± 0.28 | ||
Q-A2NN (POT + WD) | - | 90.73 ± 0 | 90.24 ± 0 | 91.38 ± 0.28 | 89.27 ± 0 | 91.55 ± 0.28 | 90.73 ± 0 | ||
Q-A2NN (SSDQ) | - | 91.87 ± 0.28 | 92.20 ± 0 | 92.68 ± 0.49 | 91.71 ± 0 | 92.36 ± 0.28 | 90.73 ± 0 | ||
VGGNet-11 | A2NN | 92.2 | - | - | - | - | - | - | |
Q-A2NN (POT) | - | 91.54 ± 0.29 | 90.89 ± 0.28 | 87.48 ± 0.28 | 80.49 ± 0.49 | 9.92 ± 0.28 | 9.76 ± 0 | ||
Q-A2NN (POT + FD) | - | 91.71 ± 0 | 91.71 ± 0 | 89.11 ± 0.28 | 86.01 ± 0.28 | 10.08 ± 0.28 | 9.76 ± 0 | ||
Q-A2NN (POT + WD) | - | 91.87 ± 0.28 | 90.89 ± 0.28 | 87.48 ± 0.28 | 90.40 ± 0.28 | 92.04 ± 0.28 | 91.06 ± 0.28 | ||
Q-A2NN (SSDQ) | - | 91.71 ± 0 | 91.71 ± 0 | 89.11 ± 0.28 | 91.22 ± 0 | 91.71 ± 0 | 91.22 ± 0.49 | ||
RSSCN7 | ResNet-18 | A2NN | 82.9 | - | - | - | - | - | - |
Q-A2NN (POT) | - | 83.68 ± 0.05 | 83.20 ± 0.09 | 82.40 ± 0.07 | 70.61 ± 0.14 | 40.61 ± 0.13 | 20.64 ± 0.20 | ||
Q-A2NN (POT + FD) | - | 83.30 ± 0.14 | 83.21 ± 0.05 | 83.24 ± 0.05 | 77.90 ± 0.12 | 50.25 ± 0.14 | 24.84 ± 0.22 | ||
Q-A2NN (POT + WD) | - | 83.68 ± 0.05 | 83.20 ± 0.09 | 82.40 ± 0.07 | 83.32 ± 0.32 | 81.90 ± 0.07 | 79.70 ± 0.27 | ||
Q-A2NN (SSDQ) | - | 83.36 ± 0.11 | 83.36 ± 0.05 | 83.29 ± 0.17 | 83.18 ± 0.11 | 82.69 ± 0.02 | 81.40 ± 0.18 | ||
VGGNet-11 | A2NN | 83.08 | - | - | - | - | - | - | |
Q-A2NN (POT) | - | 84.49 ± 0.29 | 83.62 ± 0.28 | 81.13 ± 0.28 | 54.40 ± 0.49 | 18.32 ± 0.28 | 17.49 ± 0 | ||
Q-A2NN (POT + FD) | - | 84.27 ± 0.07 | 83.91 ± 0.14 | 82.75 ± 0.13 | 72.57 ± 0.33 | 19.70 ± 0.05 | 18.07 ± 0.05 | ||
Q-A2NN (POT + WD) | - | 84.50 ± 0.07 | 83.63 ± 0.07 | 81.07 ± 0.05 | 84.55 ± 0.15 | 82.72 ± 0.09 | 80.77 ± 0.61 | ||
Q-A2NN (SSDQ) | - | 84.30 ± 0.09 | 83.91 ± 0.14 | 82.75 ± 0.13 | 83.96 ± 0.09 | 83.16 ± 0.05 | 81.09 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Chen, H.; Chen, L.; Wang, J.; Wang, G.; Liu, W. Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification. Remote Sens. 2024, 16, 2403. https://doi.org/10.3390/rs16132403
Zhang N, Chen H, Chen L, Wang J, Wang G, Liu W. Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification. Remote Sensing. 2024; 16(13):2403. https://doi.org/10.3390/rs16132403
Chicago/Turabian StyleZhang, Ning, He Chen, Liang Chen, Jue Wang, Guoqing Wang, and Wenchao Liu. 2024. "Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification" Remote Sensing 16, no. 13: 2403. https://doi.org/10.3390/rs16132403
APA StyleZhang, N., Chen, H., Chen, L., Wang, J., Wang, G., & Liu, W. (2024). Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification. Remote Sensing, 16(13), 2403. https://doi.org/10.3390/rs16132403