Satellite-Based Reconstruction of Atmospheric CO2 Concentration over China Using a Hybrid CNN and Spatiotemporal Kriging Model
Abstract
:1. Introduction
- (1)
- Introducing a novel method to transform discrete satellite observations into continuous spatiotemporal datasets.
- (2)
- Effectively integrating different types of models to optimize inherent biases of individual models.
- (3)
- Producing an independent, high-precision atmospheric CO2 dataset to enhance understanding of the carbon cycle and climate change.
2. Materials and Methods
2.1. Datasets
2.1.1. OCO-2 Dataset
2.1.2. Reanalysis Datasets
2.1.3. Other Geographical Covariates
2.1.4. TCCON Ground-Based Network
2.1.5. Mapping-XCO2 Dataset
2.2. Methods
2.2.1. CNN Model
2.2.2. Spatiotemporal Kriging
2.2.3. Validation Methods
3. Experimental Result and Accuracy Evaluation
3.1. Experimental Results
3.2. Evaluation of Model Performance
3.3. Validation with Model Simulation
3.4. Validation with TCCON Measurements
4. Discussion
4.1. Spatial Inhomogeneity of Accuracy
4.2. Uncertainty Analysis
4.2.1. Comparison with CAMS XCO2
4.2.2. Comparison with Mapping-XCO2
4.2.3. Feature Importance Evaluation
4.3. Advantages and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Chau, S.N.; Chen, X.; Zhang, J.; Li, Y.; Dietz, T.; Wang, J.; Winkler, J.A.; Fan, F.; Huang, B.; et al. Assessing Progress towards Sustainable Development over Space and Time. Nature 2020, 577, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.; et al. The Burden of Heat-Related Mortality Attributable to Recent Human-Induced Climate Change. Nat. Clim. Change 2021, 11, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.R.; Skea, J.; Slade, R.; Fradera, R.; Pathak, M.; Khourdajie, A.A.; Belkacemi, M.; Diemen, R.; Hasija, A.; Lisboa, G.; et al. Climate Change 2022—Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915792-6. [Google Scholar]
- Gillett, N.P.; Kirchmeier-Young, M.; Ribes, A.; Shiogama, H.; Hegerl, G.C.; Knutti, R.; Gastineau, G.; John, J.G.; Li, L.; Nazarenko, L.; et al. Constraining Human Contributions to Observed Warming since the Pre-Industrial Period. Nat. Clim. Change 2021, 11, 207–212. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozbiltekin-Pala, M.; Ozkan-Ozen, Y.D. Prediction and Evaluation of Greenhouse Gas Emissions for Sustainable Road Transport within Europe. Sustain. Cities Soc. 2021, 70, 102924. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 Measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- De Mazière, M.; Thompson, A.M.; Kurylo, M.J.; Wild, J.D.; Bernhard, G.; Blumenstock, T.; Braathen, G.O.; Hannigan, J.W.; Lambert, J.-C.; Leblanc, T.; et al. The Network for the Detection of Atmospheric Composition Change (NDACC): History, Status and Perspectives. Atmos. Chem. Phys. 2018, 18, 4935–4964. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Zhang, X.-Y.; Guo, L.-F.; Zhong, J.-T.; Wang, D.-Y.; Miao, C.-H.; Gao, X.; Zhang, X.-L. An Inversion Model Based on GEOS-Chem for Estimating Global and China’s Terrestrial Carbon Fluxes in 2019. Adv. Clim. Change Res. 2023, 14, 49–61. [Google Scholar] [CrossRef]
- Schuh, A.E.; Jacobson, A.R.; Basu, S.; Weir, B.; Baker, D.; Bowman, K.; Chevallier, F.; Crowell, S.; Davis, K.J.; Deng, F.; et al. Quantifying the Impact of Atmospheric Transport Uncertainty on CO2 Surface Flux Estimates. Glob. Biogeochem. Cycles 2019, 33, 484–500. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Xingying, Z.; Liyang, Z.; Ling, G.; Lin, T. Interpreting Seasonal Changes of Low-Tropospheric CO2 over China Based on SCIAMACHY Observations during 2003–2011. Atmos. Environ. 2015, 103, 180–187. [Google Scholar] [CrossRef]
- Bie, N.; Lei, L.; Zeng, Z.; Cai, B.; Yang, S.; He, Z.; Wu, C.; Nassar, R. Regional Uncertainty of GOSAT XCO2 Retrievals in China: Quantification and Attribution. Atmos. Meas. Tech. 2018, 11, 1251–1272. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yue, T.X.; Wilson, J.P.; Zhao, N.; Zhao, Y.P.; Du, Z.P.; Liu, Y. A Comparison of Satellite Observations with the XCO2 Surface Obtained by Fusing TCCON Measurements and GEOS-Chem Model Outputs. Sci. Total Environ. 2017, 601–602, 1575–1590. [Google Scholar] [CrossRef]
- Zhou, M.; Ni, Q.; Cai, Z.; Langerock, B.; Nan, W.; Yang, Y.; Che, K.; Yang, D.; Wang, T.; Liu, Y.; et al. CO2 in Beijing and Xianghe Observed by Ground-Based FTIR Column Measurements and Validation to OCO-2/3 Satellite Observations. Remote Sens. 2022, 14, 3769. [Google Scholar] [CrossRef]
- Falahatkar, S.; Mousavi, S.M.; Farajzadeh, M. Spatial and Temporal Distribution of Carbon Dioxide Gas Using GOSAT Data over IRAN. Environ. Monit. Assess. 2017, 189, 627. [Google Scholar] [CrossRef] [PubMed]
- Bezyk, Y.; Sówka, I.; Górka, M.; Blachowski, J. GIS-Based Approach to Spatio-Temporal Interpolation of Atmospheric CO2 Concentrations in Limited Monitoring Dataset. Atmosphere 2021, 12, 384. [Google Scholar] [CrossRef]
- Tadić, J.M.; Qiu, X.; Miller, S.; Michalak, A.M. Spatio-Temporal Approach to Moving Window Block Kriging of Satellite Data v1.0. Geosci. Model Dev. 2017, 10, 709–720. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, H.; Han, G.; Mao, F.; Xu, H.; Shi, T.; Hu, H.; Sun, T.; Gong, W. A Regional Spatiotemporal Downscaling Method for CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8084–8093. [Google Scholar] [CrossRef]
- He, Z.; Lei, L.; Zhang, Y.; Sheng, M.; Wu, C.; Li, L.; Zeng, Z.-C.; Welp, L.R. Spatio-Temporal Mapping of Multi-Satellite Observed Column Atmospheric CO2 Using Precision-Weighted Kriging Method. Remote Sens. 2020, 12, 576. [Google Scholar] [CrossRef]
- Zammit-Mangion, A.; Cressie, N.; Shumack, C. On Statistical Approaches to Generate Level 3 Products from Satellite Remote Sensing Retrievals. Remote Sens. 2018, 10, 155. [Google Scholar] [CrossRef]
- Zeng, Z.-C.; Lei, L.; Strong, K.; Jones, D.B.A.; Guo, L.; Liu, M.; Deng, F.; Deutscher, N.M.; Dubey, M.K.; Griffith, D.W.T.; et al. Global Land Mapping of Satellite-Observed CO2 Total Columns Using Spatio-Temporal Geostatistics. Int. J. Digit. Earth 2017, 10, 426–456. [Google Scholar] [CrossRef]
- Van Zoest, V.; Osei, F.B.; Hoek, G.; Stein, A. Spatio-Temporal Regression Kriging for Modelling Urban NO2 Concentrations. Int. J. Geogr. Inf. Sci. 2020, 34, 851–865. [Google Scholar] [CrossRef]
- Gao, Z.; Jiang, Y.; He, J.; Wu, J. Spatiotemporal Variation Analysis of Global XCO2 Concentration during 2010–2020 Based on DINEOF-BME Framework and Wavelet Function. Sci. Total Environ. 2023, 892, 164750. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, T.; Zhang, L.; Zhao, N.; Zhao, M.; Liu, Y. Simulation and Analysis of XCO2 in North China Based on High Accuracy Surface Modeling. Environ. Sci. Pollut. Res. 2018, 25, 27378–27392. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, J.; Feng, H.; Jin, Z. High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in Beijing–Tianjin–Hebei Region. Int. J. Environ. Res. Public Health 2022, 19, 10853. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Ju, Y.; Yang, S.; Zhang, Z.; Chen, Y. Reconstructing Annual XCO2 at a 1 km × 1 km Spatial Resolution across China from 2012 to 2019 Based on a Spatial CatBoost Method. Environ. Res. 2023, 236, 116866. [Google Scholar] [CrossRef]
- He, S.; Yuan, Y.; Wang, Z.; Luo, L.; Zhang, Z.; Dong, H.; Zhang, C. Machine Learning Model-Based Estimation of XCO2 with High Spatiotemporal Resolution in China. Atmosphere 2023, 14, 436. [Google Scholar] [CrossRef]
- Li, T.; Wu, J.; Wang, T. Generating Daily High-Resolution and Full-Coverage XCO2 across China from 2015 to 2020 Based on OCO-2 and CAMS Data. Sci. Total Environ. 2023, 893, 164921. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, G. Mapping Contiguous XCO2 by Machine Learning and Analyzing the Spatio-Temporal Variation in China from 2003 to 2019. Sci. Total Environ. 2023, 858, 159588. [Google Scholar] [CrossRef]
- Liu, D.; Di, B.; Luo, Y.; Deng, X.; Zhang, H.; Yang, F.; Grieneisen, M.L.; Zhan, Y. Estimating Ground-Level CO Concentrations across China Based on the National Monitoring Network and MOPITT: Potentially Overlooked CO Hotspots in the Tibetan Plateau. Atmos. Chem. Phys. 2019, 19, 12413–12430. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef]
- Shao, Y.; Ma, Z.; Wang, J.; Bi, J. Estimating Daily Ground-Level PM2.5 in China with Random-Forest-Based Spatiotemporal Kriging. Sci. Total Environ. 2020, 740, 139761. [Google Scholar] [CrossRef] [PubMed]
- Osterman, G.; O’Dell, C.; Eldering, A.; Fisher, B.; Crisp, D.; Cheng, C.; Frankenberg, C.; Lambert, A.; Gunson, M.; Mandrake, L.; et al. Orbiting Carbon Observatory-2 & 3 (OCO-2 & OCO-3) Data Product User’s Guide, Operational Level 2 Data Versions 10 and Lite File Version 10 and VEarly. 2020. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_OCO3_B10_DUG.pdf (accessed on 18 March 2023).
- Connor, B.; Bösch, H.; McDuffie, J.; Taylor, T.; Fu, D.; Frankenberg, C.; O’Dell, C.; Payne, V.H.; Gunson, M.; Pollock, R.; et al. Quantification of Uncertainties in OCO-2 Measurements of XCO2 Simulations and Linear Error Analysis. Atmos. Meas. Tech. 2016, 9, 5227–5238. [Google Scholar] [CrossRef]
- Jacobs, N.; Simpson, W.R.; Graham, K.A.; Holmes, C.; Hase, F.; Blumenstock, T.; Tu, Q.; Frey, M.; Dubey, M.K.; Parker, H.A.; et al. Spatial Distributions of XCO2 Seasonal Cycle Amplitude and Phase over Northern High-Latitude Regions. Atmos. Chem. Phys. 2021, 21, 16661–16687. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, M.; Langerock, B.; Sha, M.K.; Hermans, C.; Wang, T.; Ji, D.; Vigouroux, C.; Kumps, N.; Wang, G.; et al. New Ground-Based Fourier-Transform near-Infrared Solar Absorption Measurements of XCO2, XCH4 and XCO at Xianghe, China. Earth Syst. Sci. Data 2020, 12, 1679–1696. [Google Scholar] [CrossRef]
- Zeng, Z.; Lei, L.; Hou, S.; Ru, F.; Guan, X.; Zhang, B. A Regional Gap-Filling Method Based on Spatiotemporal Variogram Model of CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3594–3603. [Google Scholar] [CrossRef]
- Sun, X.-L.; Yang, Q.; Wang, H.-L.; Wu, Y.-J. Can Regression Determination, Nugget-to-Sill Ratio and Sampling Spacing Determine Relative Performance of Regression Kriging over Ordinary Kriging? CATENA 2019, 181, 104092. [Google Scholar] [CrossRef]
- Luo, X. Spatiotemporal Stochastic Models for Earth Science and Engineering Applications. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1998. [Google Scholar]
- Yang, J.; Hu, M. Filling the Missing Data Gaps of Daily MODIS AOD Using Spatiotemporal Interpolation. Sci. Total Environ. 2018, 633, 677–683. [Google Scholar] [CrossRef]
- Hu, H.; Hu, Z.; Zhong, K.; Xu, J.; Zhang, F.; Zhao, Y.; Wu, P. Satellite-Based High-Resolution Mapping of Ground-Level PM2.5 Concentrations over East China Using a Spatiotemporal Regression Kriging Model. Sci. Total Environ. 2019, 672, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Ramonet, M.; Langerock, B.; Warneke, T.; Eskes, H.J. Validation Report of the CAMS Greenhouse Gas Global Re-Analysis, Years 2003–2020, Copernicus Atmosphere Monitoring Service (CAMS) Report. 2021. Available online: https://atmosphere.copernicus.eu/sites/default/files/2021-04/CAMS84_2018SC3_D5.1.2-2020.pdf (accessed on 26 June 2023).
- Zhang, L.; Yue, T.; Wilson, J.; Wang, D.; Zhao, N.; Liu, Y.; Liu, D.; Du, Z.; Wang, Y.; Lin, C.; et al. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments. Sensors 2016, 16, 1818. [Google Scholar] [CrossRef]
- Worden, K.; Iakovidis, I.; Cross, E.J. New Results for the ADF Statistic in Nonstationary Signal Analysis with a View towards Structural Health Monitoring. Mech. Syst. Signal Process. 2021, 146, 106979. [Google Scholar] [CrossRef]
- Gianfreda, A.; Maranzano, P.; Parisio, L.; Pelagatti, M. Testing for Integration and Cointegration When Time Series Are Observed with Noise. Econ. Model. 2023, 125, 106352. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Hristopulos, D.T. Comparison of Spatiotemporal Variogram Functions Based on a Sparse Dataset of Groundwater Level Variations. Spat. Stat. 2019, 34, 100245. [Google Scholar] [CrossRef]
- Sukkuea, A.; Heednacram, A. Prediction on Spatial Elevation Using Improved Kriging Algorithms: An Application in Environmental Management. Expert Syst. Appl. 2022, 207, 117971. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
Site | Latitude | Longitude | Start Date | End Date |
---|---|---|---|---|
Hefei | 31.9°N | 117.17°E | 2015-11-02 | 2020-12-31 |
Xianghe | 39.8°N | 116.96°E | 2018-06-14 | 2022-05-31 |
Latitude (°N) | R2 | RMSE | MAE | |
I | [Min *, 20] | 0.963 | 0.903 | 0.670 |
II | (20, 30] | 0.944 | 1.133 | 0.822 |
III | (30, 40] | 0.932 | 1.295 | 0.953 |
IV | (40, 50] | 0.937 | 1.303 | 0.964 |
V | [50, Max *] | 0.934 | 1.487 | 1.101 |
Season | R2 | RMSE | MAE | |
VI | Spring (Mar, Apr, May) | 0.939 | 1.129 | 0.824 |
VII | Summer (Jun, Jul, Aug) | 0.920 | 1.540 | 1.169 |
VIII | Autumn (Sep, Oct, Nov) | 0.932 | 1.235 | 0.911 |
IX | Winter (Dec, Jan, Feb) | 0.933 | 1.170 | 0.845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Y.; Zhao, X.; Sun, W.; Sun, Q. Satellite-Based Reconstruction of Atmospheric CO2 Concentration over China Using a Hybrid CNN and Spatiotemporal Kriging Model. Remote Sens. 2024, 16, 2433. https://doi.org/10.3390/rs16132433
Hua Y, Zhao X, Sun W, Sun Q. Satellite-Based Reconstruction of Atmospheric CO2 Concentration over China Using a Hybrid CNN and Spatiotemporal Kriging Model. Remote Sensing. 2024; 16(13):2433. https://doi.org/10.3390/rs16132433
Chicago/Turabian StyleHua, Yiying, Xuesheng Zhao, Wenbin Sun, and Qiwen Sun. 2024. "Satellite-Based Reconstruction of Atmospheric CO2 Concentration over China Using a Hybrid CNN and Spatiotemporal Kriging Model" Remote Sensing 16, no. 13: 2433. https://doi.org/10.3390/rs16132433
APA StyleHua, Y., Zhao, X., Sun, W., & Sun, Q. (2024). Satellite-Based Reconstruction of Atmospheric CO2 Concentration over China Using a Hybrid CNN and Spatiotemporal Kriging Model. Remote Sensing, 16(13), 2433. https://doi.org/10.3390/rs16132433