Integration of 3D Gaussian Splatting and Neural Radiance Fields in Virtual Reality Fire Fighting
Abstract
:1. Introduction
- 1.
- Hypothesis 1: The use of 3D Gaussian splatting [6] in VR fire training will provide a more immersive and realistic fire scene compared to traditional 3D modeling techniques.
- 2.
- 3.
- Hypothesis 3: Integrating multi-user virtual fire scenarios using the Photon PUN2 [9] framework will improve collaboration and effectiveness in fire suppression tasks compared to single-user VR scenarios.
- Immersive fire scene: import 3D Gaussian Splatting scenes into Unity3D, and users can wear VR head-mounted displays (HMDs) to roam around the scene and realize interaction with the scene.
- Differences from traditional modeling: Unlike the previous use of 3ds Max [10] and other modeling tools to create models of fire extinguishing equipment, neural radiance fields (NeRFs) technology is used to create models of fire extinguishing equipment with more realistic texture.
- Full System Integration: Design virtual fire scenarios with a multi-user experience using the Photon PUN2 framework, allowing users to collaborate on fire suppression tasks.
2. Materials and Methods
2.1. Neural Radiance Fields
2.1.1. NeRF for Fast Training
2.1.2. VR-NeRF
2.2. 3D Gaussian Splatting
2.3. System Design and Implementation
2.3.1. 3D Gaussian Splatting in VR
2.3.2. Creating Fire and Smoke Effects
Algorithm 1 Update fire size |
|
2.3.3. Generate Fire Equipment Model
2.3.4. Realization of the Fire Extinguishing Function
Algorithm 2 Particle Collision Handling |
|
2.3.5. Multi-User Fire Fighting
3. Results
- CPU: Intel Core i9-10920X CPU @ 3.50 GHz
- RAM: 64 GB (3200 MHz/3200 MHz)
- GPU: NVIDIA GeForce RTX 3090
- Hard-Disk Drive: 2 TB SSD
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perović, I. Analysis of the publics’ competence levels in preventive fire protection measures, firefighting and rescue of the people and property endangered by fire. Vatrog. Upravlj. Pozar. 2023, 13, 5–16. [Google Scholar]
- Bellemans, M.; Lamrnens, D.; De Sloover, J.; De Vleeschauwer, T.; Schoofs, E.; Jordens, W.; Van Steenhuyse, B.; Mangelschots, J.; Selleri, S.; Hamesse, C. Training Firefighters in Virtual Reality. In Proceedings of the 2020 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 15 December 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Klačková, I.; Kuric, I.; Zajačko, I.; Tlach, V.; Wiecek, D. Virtual reality in Industry. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1199, p. 012005. [Google Scholar]
- Blackman, T. Virtual reality and videogames: Immersion, presence, and the performative spatiality of ‘being there’ in virtual worlds. Soc. Cult. Geogr. 2024, 25, 404–422. [Google Scholar] [CrossRef]
- Romanoni, A.; Fiorenti, D.; Matteucci, M. Mesh-based 3D textured urban mapping. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3460–3466. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkühler, T.; Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph. 2023, 42, 1–14. [Google Scholar] [CrossRef]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans. Graph. (TOG) 2022, 41, 1–15. [Google Scholar] [CrossRef]
- Aaltonen, P. Networking Tools Performance Evaluation in a VR Application: Mirror vs. Photon PUN2. 2022. Available online: https://www.theseus.fi/bitstream/handle/10024/755310/Aaltonen_Pasi.pdf?sequence=2&isAllowed=y’ (accessed on 30 June 2024).
- Dangi, P.; Jain, A.; Samanta, D.; Dutta, S.; Bhattacharya, A. 3D Modelling and Rendering Using Autodesk 3ds Max. In Proceedings of the 2023 11th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON), Jaipur, India, 10–11 February 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Kajiya, J.T.; Von Herzen, B.P. Ray Tracing Volume Densities. ACM SIGGRAPH Comput. Graph. 1984, 18, 165–174. [Google Scholar] [CrossRef]
- Tancik, M.; Srinivasan, P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.; Ng, R. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. Adv. Neural Inf. Process. Syst. 2020, 33, 7537–7547. [Google Scholar]
- Wang, H.; Yu, T.; Yang, T.; Qiao, H.; Dai, Q. Neural Physical Simulation with Multi-Resolution Hash Grid Encoding. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 5410–5418. [Google Scholar]
- Xu, L.; Agrawal, V.; Laney, W.; Garcia, T.; Bansal, A.; Kim, C.; Rota Bulò, S.; Porzi, L.; Kontschieder, P.; Božič, A.; et al. VR-NeRF: High-Fidelity Virtualized Walkable Spaces. In Proceedings of the SIGGRAPH Asia 2023 Conference Papers, Sydney, NSW, Australia, 12–15 December 2023; pp. 1–12. [Google Scholar]
- Lu, C.Y.; Zhou, P.; Xing, A.; Pokhariya, C.; Dey, A.; Shah, I.N.; Mavidipalli, R.; Hu, D.; Comport, A.I.; Chen, K.; et al. DiVa-360: The Dynamic Visual Dataset for Immersive Neural Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024, CVPR 2024, Seattle, DC, USA., 17–21 June 2024. [Google Scholar]
- Jing, W.; Wang, S.; Zhang, W.; Li, C. Reconstruction of Neural Radiance Fields with Vivid Scenes in the Metaverse. IEEE Trans. Consum. Electron. 2023. [Google Scholar] [CrossRef]
- Li, K.; Rolff, T.; Schmidt, S.; Bacher, R.; Frintrop, S.; Leemans, W.; Steinicke, F. Immersive Neural Graphics Primitives. arXiv 2022, arXiv:2211.13494. [Google Scholar]
- Li, K.; Rolff, T.; Schmidt, S.; Bacher, R.; Leemans, W.; Steinicke, F. Interacting with Neural Radiance Fields in Immersive Virtual Reality. In Proceedings of the Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–4. [Google Scholar]
- Li, K.; Schmidt, S.; Rolff, T.; Bacher, R.; Leemans, W.; Steinicke, F. Magic NeRF Lens: Interactive Fusion of Neural Radiance Fields for Virtual Facility Inspection. Front. Virtual Real. 2024, 5, 1377245. [Google Scholar] [CrossRef]
- Dalal, A.; Hagen, D.; Robbersmyr, K.G.; Knausgård, K.M. Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review. arXiv 2024, arXiv:2405.03417. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, C.; Xie, T.; Li, X.; Feng, Y.; Wang, H.; Li, M.; Lau, H.; Gao, F.; Yang, Y.; et al. VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality. arXiv 2024, arXiv:2401.16663. [Google Scholar]
- Schonberger, J.L.; Frahm, J.M. Structure-From-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Fu, Y.; Liu, S.; Kulkarni, A.; Kautz, J.; Efros, A.A.; Wang, X. COLMAP-Free 3D Gaussian Splatting. arXiv 2023, arXiv:2312.07504. [Google Scholar]
- Turkulainen, M.; Ren, X.; Melekhov, I.; Seiskari, O.; Rahtu, E.; Kannala, J. DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing. arXiv 2024, arXiv:2403.17822. [Google Scholar]
- Xu, Q.; Xu, Z.; Philip, J.; Bi, S.; Shu, Z.; Sunkavalli, K.; Neumann, U. Point-NeRF: Point-Based Neural Radiance Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5438–5448. [Google Scholar]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: New York, NY, USA, 2010; pp. 2366–2369. [Google Scholar]
- Barron, J.T.; Mildenhall, B.; Verbin, D.; Srinivasan, P.P.; Hedman, P. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5470–5479. [Google Scholar]
- Nurym, N.; Sambetova, R.; Azybaev, M.; Kerimbayev, N. Virtual Reality and Using the Unity 3D Platform for Android Games. In Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 28–30 August 2020; IEEE: New York, NY, USA, 2020; pp. 539–544. [Google Scholar]
- UnityGaussianSplatting. Available online: https://github.com/aras-p/UnityGaussianSplatting (accessed on 30 June 2024).
- Lewis, C.; Harris, F. An Overview of Virtual Reality. EPiC Ser. Comput. 2023, 88. [Google Scholar]
- Sayyad, E.; Sra, M.; Höllerer, T. Walking and Teleportation in Wide-area Virtual Reality Experiences. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Virtual, 9–13 November 2020; IEEE: New York, NY, USA, 2020; pp. 608–617. [Google Scholar]
- Juránek, V. Virtual Reality Toolkit for the Unity Game Engine. Bakalárskáprace, Masarykova Univerzita, Fakulta informatiky. 2021. Available online: https://is.muni.cz/th/qyryn/thesis.pdf (accessed on 30 June 2024).
- Zhang, B.; Hu, W. Game Special Effect Simulation Based on Particle System of Unity3D. In Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017; IEEE: New York, NY, USA, 2017; pp. 595–598. [Google Scholar]
- Assetstore. Available online: https://assetstore.unity.com/ (accessed on 30 June 2024).
- Smoke. Available online: https://cn.comsol.com/model/smoke-from-an-incense-stick-8212-visualizing-the-laminar-to-turbulent-transition-97501 (accessed on 30 June 2024).
- Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Zhu, D.; Yu, B.; Wang, D.; Zhang, Y. Fusion of finite element and machine learning methods to predict rock shear strength parameters. J. Geophys. Eng. 2024, gxae064. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Lian, H.; Ma, Y.; Meng, Z.; Li, P.; Ding, C.; Bordas, S.P. Reduced order isogeometric boundary element methods for CAD-integrated shape optimization in electromagnetic scattering. Comput. Methods Appl. Mech. Eng. 2024, 419, 116654. [Google Scholar] [CrossRef]
- Chen, L.; Lian, H.; Dong, H.W.; Yu, P.; Jiang, S.; Bordas, S.P.A. Broadband topology optimization of three-dimensional structural-acoustic interaction with reduced order isogeometric FEM/BEM. J. Comput. Phys. 2024, 509, 113051. [Google Scholar] [CrossRef]
- Blenderco. Available online: https://blenderco.cn/ (accessed on 30 June 2024).
- BlenderNeRF. Available online: https://github.com/maximeraafat/BlenderNeRF (accessed on 30 June 2024).
- Dongqing, W.; Jian, G.; Pengfei, G.; Zhengtao, X. Research on Design Pattern of 3D Model Software Development Based on Meshlab. Acad. J. Manuf. Eng. 2020, 18, 164–172. [Google Scholar]
- Wang, C.Y.; Sakashita, M.; Ehsan, U.; Li, J.; Won, A.S. Again, Together: Socially Reliving Virtual Reality Experiences When Separated. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–12. [Google Scholar]
- Batterton, K.A.; Hale, K.N. The Likert Scale What It Is and How to Use It. Phalanx 2017, 50, 32–39. [Google Scholar]
- Bian, Y.; Yang, C.; Gao, F.; Li, H.; Zhou, S.; Li, H.; Sun, X.; Meng, X. A framework for physiological indicators of flow in VR games: Construction and preliminary evaluation. Pers. Ubiquitous Comput. 2016, 20, 821–832. [Google Scholar] [CrossRef]
- Halbig, A.; Latoschik, M.E. A Systematic Review of Physiological Measurements, Factors, Methods, and Applications in Virtual Reality. Front. Virtual Real. 2021, 2, 694567. [Google Scholar] [CrossRef]
- Moreno, A.; Posada, J.; Segura, Á.; Arbelaiz, A.; García-Alonso, A. Interactive fire spread simulations with extinguishment support for Virtual Reality training tools. Fire Saf. J. 2014, 64, 48–60. [Google Scholar] [CrossRef]
- Heyao, H.; Tetsuro, O. Assessing the Sense of Presence to Evaluate the Effectiveness of Virtual Reality Wildfire Training. In Advances in Networked-Based Information Systems: The 24th International Conference on Network-Based Information Systems (NBiS-2021); Springer: Cham, Switzerland, 2022; pp. 289–298. [Google Scholar]
- De Lorenzis, F.; Pratticò, F.G.; Lamberti, F. Work-in-Progress—Blower VR: A Virtual Reality Experience to Support the Training of Forest Firefighters. In Proceedings of the 2022 8th International Conference of the Immersive Learning Research Network (iLRN), Vienna, Austria, 30 May–4 June 2022; IEEE: New York, NY, USA, 2022; pp. 1–3. [Google Scholar]
Firefighting System | Items in Question | Oculus Quest 2 | Oculus Quest 3 |
---|---|---|---|
user experience | Does it have a good sense of immersion? | 8.1 | 8.5 |
How does the interaction feel? | 8.1 | 8.3 | |
How comfortable is it to wear? | 7.5 | 8 | |
training effect | What about the authenticity of the fire? | 8.1 | 8.4 |
Is there an understanding of the use of fire extinguishers? | 6 | 6 | |
How difficult is it to extinguish a fire? | 3.5 | 3.2 | |
system optimization | Do you think the system is complete? | 7.7 | 7.7 |
Do you feel a sense of vertigo in the scene? | 4 | 3.5 | |
Is multiplayer collaboration well-designed? | 7.6 | 7.6 |
Evaluation Index | VR Firefighting Training | Average | Standard Deviation |
---|---|---|---|
Environment | Is the simulated smoke and sound real in the virtual environment? | 4.8 | 1.1 |
Physical Sensation | Are virtual fire extinguishers realistic compared to real ones? | 5.1 | 1.1 |
Emergency Response | Does the virtual fire extinguishing environment lack real emergency perception? | 5.2 | 1.7 |
User Security | Does the body feel unwell in the virtual fire fighting environment? | 2.5 | 1.2 |
Learning Curve | Can virtual fire fighting training develop fire fighting skills? | 4.9 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, H.; Liu, K.; Cao, R.; Fei, Z.; Wen, X.; Chen, L. Integration of 3D Gaussian Splatting and Neural Radiance Fields in Virtual Reality Fire Fighting. Remote Sens. 2024, 16, 2448. https://doi.org/10.3390/rs16132448
Lian H, Liu K, Cao R, Fei Z, Wen X, Chen L. Integration of 3D Gaussian Splatting and Neural Radiance Fields in Virtual Reality Fire Fighting. Remote Sensing. 2024; 16(13):2448. https://doi.org/10.3390/rs16132448
Chicago/Turabian StyleLian, Haojie, Kangle Liu, Ruochen Cao, Ziheng Fei, Xin Wen, and Leilei Chen. 2024. "Integration of 3D Gaussian Splatting and Neural Radiance Fields in Virtual Reality Fire Fighting" Remote Sensing 16, no. 13: 2448. https://doi.org/10.3390/rs16132448
APA StyleLian, H., Liu, K., Cao, R., Fei, Z., Wen, X., & Chen, L. (2024). Integration of 3D Gaussian Splatting and Neural Radiance Fields in Virtual Reality Fire Fighting. Remote Sensing, 16(13), 2448. https://doi.org/10.3390/rs16132448