A Cross-Resolution Surface Net Radiative Inversion Based on Transfer Learning Methods
Abstract
:1. Introduction
Type | Dataset | Spatial Resolution | Temporal Resolution | Time Span |
---|---|---|---|---|
Reanalysis Products | NCEP/CFSR [27] | 38 km | 6-hourly | 1979–2010 |
NASA/MERRA [28] | 0.5° × 2/3° | hourly | 1979– | |
ERA40 [29] | 125 km | 6-hourly | 1957–2002 | |
ERA-Interim [30] | 80 km | 3-hourly | 1980– | |
JRA55 | 55 km | 3-hourly | 1958– | |
NVEP/NCAR RII | 200 km | 6-hourly | 1979– | |
Remote Sensing Products | CERES-SYN [31] | 1° | 3-hourly | 2000– |
ISCCP-FD [32] | 280 km | 3-hourly | 1983–2011 | |
GLASS/Rn | 0.05° | daily | 2000–2020 |
2. Materials and Methods
2.1. Data Sourcing and Preprocessing
2.1.1. In Situ Measurements
2.1.2. NDVI Remote Sensing Datasets
2.1.3. GLASS Rn Datasets
2.1.4. Meteorological Datasets
2.2. Model Design
2.2.1. Sample Production
2.2.2. Dense Convolutional Network for Net Radiation
2.2.3. Ensemble Transfer Learning Framework
2.2.4. Methodology
2.3. Model Evaluation Metrics
3. Results
3.1. Evaluation of Pre-Trained Coarse-Resolution Net Radiation Models
3.2. Evaluation of High-Resolution Net Radiation Models for Fine-Tuning Transfer Learning
3.3. Relative Importance of Features
4. Discussion
5. Conclusions
- (1)
- Twenty-five deep-learning net radiation models were pre-trained using the DenseNet model to successfully capture the temporal variations and spatial distribution trends of GLASS net radiation products. The validation accuracies of the optimal net radiation model predictions were achieved with R2, bias, and root mean square errors of 0.977, 0.1 W/m2, and 12.004 W/m2.
- (2)
- The transfer of the coarse-resolution model to the high-resolution model was achieved by parameter fine-tuning using only a small amount of measured flux site net radiation data. The model validation results show that the accurate R2 and RMSE of the net radiation values predicted by the transfer learning model were improved from 0.839 and 35.741 W/m2 to 0.924 and 24.292 W/m2, respectively, compared with the GLASS Rn data.
- (3)
- Among all the covariates, net surface shortwave radiation (SSRA) was considered the most important feature, surface specific humidity (SHU) had the next highest importance, while pressure (PRS), temperature (TEMP), normalized vegetation index (NDVI), and wind speed (WIN) had a relatively small effect on the net radiation prediction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, S.; Wang, D.; He, T.; Yu, Y. Remote sensing of earth’s energy budget: Synthesis and review. Int. J. Digit. Earth. 2019, 12, 737–780. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Oleson, K.W.; Bonan, G.; Hoffman, F.; Thornton, P.; Vertenstein, M.; Yang, Z.L.; Zeng, X. The community landmodel and its climate statistics as a component of the community climate system model. J. Clim. 2006, 19, 2302–2324. [Google Scholar] [CrossRef]
- Bisht, G.; Venturini, V.; Islam, S.; Jiang, L. Estimation of the net radiation using modis (moderate resolution imaging spectrora-diometer) data for clear sky days. Remote Sens. Environ. 2005, 97, 52–67. [Google Scholar] [CrossRef]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Zhang, L. Validation and Spatiotemporal Analysis of Surface Net Radiation from CRA/Land and ERA5-Land over the Tibetan Plateau. Atmosphere 2023, 14, 1542. [Google Scholar] [CrossRef]
- Li, S.; Jiang, B.; Peng, J.; Liang, H.; Han, J.; Yao, Y.; Jia, K. Estimation of the All-Wave All-Sky Land Surface Daily Net Radiation at Mid-Low Latitudes from MODIS Data Based on ERA5 Constraints. Remote Sens. 2022, 14, 33. [Google Scholar] [CrossRef]
- Meng, C. Review of Numerical Simulation Research on Urban Land Surface Characteristics. Adv. Earth Sci. 2014, 29, 464–474. [Google Scholar]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martinez-de-Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Decker, M.; Brunke, M.A.; Wang, Z.; Sakaguchi, K.; Zeng, X.; Bosilovich, M.G. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Clim. 2012, 25, 1916–1944. [Google Scholar] [CrossRef]
- Jia, A.; Liang, S.; Jiang, B.; Zhang, X.; Wang, G. Comprehensive Assessment of Global Surface Net Radiation Products and Uncertainty Analysis. J. Geophys. Res. Atmos. 2018, 123, 1970–1989. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E.G.; König-Langlo, G. The global energy balance from a surface perspective. Clim. Dyn. 2012, 40, 3107–3134. [Google Scholar] [CrossRef]
- Liu, K.; Wu, X.; Liu, Y.; Ali, M.; Yang, F.; He, Q. Estimation of hourly surface net radiation in Taklimakan Desert based on multi-source remote sensing data and reanalysis data. J. Desert Res. 2021, 41, 51–61. [Google Scholar]
- Chen, J.; He, T.; Jiang, B.; Liang, S. Estimation of all-sky all-wave daily net radiation at high latitudes from MODIS data. Remote Sens. Environ. 2020, 245, 111842. [Google Scholar] [CrossRef]
- Amatya, P.M.; Ma, Y.; Han, C.; Wang, B.; Devkota, L.P. Estimation of net radiation flux distribution on the southern slopes of the central Himalayas using MODIS data. Atmos. Res. 2015, 154, 146–154. [Google Scholar] [CrossRef]
- Tegegne, E.B.; Ma, Y.; Chen, X.; Ma, W.; Wang, B.; Ding, Z.; Zhu, Z. Estimation of the distribution of the total net radiative flux from satellite and automatic weather station data in the Upper Blue Nile basin, Ethiopia. Theor. Appl. Climatol. 2020, 143, 587–602. [Google Scholar] [CrossRef]
- Banerjee, S.; Singal, G.; Saha, S.; Mittal, H.; Srivastava, M.; Mukherjee, A.; Garg, D. Machine Learning approach to Predict net radiation over crop surfaces from global solar radiation and canopy temperature data. Int. J. Biometeorol. 2022, 66, 2405–2415. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhang, Y.; Liang, S.; Zhang, X.; Xiao, Z. Surface Daytime Net Radiation Estimation Using Artificial Neural Networks. Remote Sen. 2014, 6, 11031–11050. [Google Scholar] [CrossRef]
- Ojo, O.S.; Adeyemi, B.; Oluleye, D.O. Artificial neural network models for prediction of net radiation over a tropical region. Neural Comput. Appl. 2021, 33, 6865–6877. [Google Scholar] [CrossRef]
- Jia, L.; Su, Z.; Hurk, D.V.; Moene, A.F.; Menenti, M. The surface energy balance system (SEBS) for estimating energy balance at regional scale—A validation using atsr and scintillometer measurements and RACMO PBL variables. Assoc. Coll. Res. Libr. Am. Libr. Assoc. 2002, 23, 8–9. [Google Scholar]
- Zeng, Z.; Li, Z.; Luo, X.; Li, X. Estimation of surface net radiation using a deep learning approach. J. Hydrol. 2019, 575, 124001. [Google Scholar]
- Li, X.; Li, Z.; Zeng, C.; Wang, J. A machine learning-based data fusion approach for estimating surface net radiation in the Tibetan Plateau. Remote Sens. 2020, 12, 341. [Google Scholar]
- Wang, K.; Li, X.; Li, Z. Estimation of terrestrial surface net radiation using a deep learning model. Remote Sens. 2021, 13, 154. [Google Scholar]
- Liu, Y.; Li, X.; Li, Z.; Tang, W. Estimation of surface net solar radiation using a machine learning model and its application in a water-energy balance model. Remote Sens. 2022, 14, 403. [Google Scholar]
- Zhang, Y.; Li, X.; Li, Z. A deep learning-based method for estimating surface net radiation from remote sensing data. Remote Sens. 2021, 13, 3042. [Google Scholar]
- Hemmati, E.; Sahebi, M.R. Surface soil moisture retrieval based on transfer learning using SAR data on a local scale. Int. J. Remote Sens. 2024, 45, 2374–2406. [Google Scholar] [CrossRef]
- Zhu, L.; Dai, J.; Liu, Y.; Yuan, S.; Qin, T.; Walker, J.P. A cross-resolution transfer learning approach for soil moisture retrieval from Sentinel-1 using limited training samples. Remote Sens. Environ. 2024, 301, 113944. [Google Scholar] [CrossRef]
- Saha, S. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Simmons, A.J.; Gibson, J.K. ERA-40 Project Report Series. 1. The ERA-40 Project Plan; ECMWF: Reading, UK, 2020; 62p. [Google Scholar]
- Berrisford, P.; Kållberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.J.; Sato, H. Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [Google Scholar] [CrossRef]
- Young, D.F.; Wong, T.; Wielicki, B.A. Temporal Interpolation Methods for the Clouds and the Earth’s Radiant Energy System (CERES) Experiment. J. Appl. Meteor. Climatol. 1998, 37, 572–590. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Rossow, W.B.; Lacis, A.A. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2.Validation and first result. J. Geophys. Res. Atmos. 1995, 100, 1167–1197. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Ren, Z. The Heihe Integrated Observatory Network: A Basin-scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Wang, L. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 2017, 4, 170083. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Liang, S.; Jia, A.; Xu, J.; Zhang, X.; Xiao, Z.; Yao, Y. Validation of the surface daytime net radiation product from version 4.0 GLASS product suite. IEEE Geosci. Remote Sens. Lett. 2018, 16, 509–513. [Google Scholar] [CrossRef]
- Schotanus, P.; Nieuwstadt, F.; De Bruin, H.A.R. Temperature-Measurement with a Sonic Anemometer and Its Application to Heat and Moisture Fluxes. Bound. Layer Meteorol. 1983, 26, 81–93. [Google Scholar] [CrossRef]
- Moore, C.J. Frequency response corrections for eddy correlation systems. Bound. Layer Meteorol. 1986, 37, 17–35. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Pleiss, G.; Van Der Maaten, L.; Weinberger, K.Q. Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 44, 8704–8716. [Google Scholar] [CrossRef] [PubMed]
- Aljazaeri, M.; Bazi, Y.; AlMubarak, H.; Alajlan, N. Faster R-CNN and DenseNet regression for glaucoma detection in retinal fundus images. In Proceedings of the 2020 2nd International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 13–15 October 2020; pp. 1–4. [Google Scholar]
- Eldan, R.; Shamir, O. The power of depth for feedforward neural networks. In Proceedings of the Conference on Learning Theory, PMLR, New York, NY, USA, 23–26 June 2016; pp. 907–940. [Google Scholar]
- Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit. 2019, 90, 119–133. [Google Scholar] [CrossRef]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, B.; Liang, S.; Wang, D.; He, T.; Wang, Q.; Zhao, X.; Xu, J. Surface Shortwave Net Radiation Estimation from Landsat TM/ETM+ Data Using Four Machine Learning Algorithms. Remote Sens. 2019, 11, 2847. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, J. Feasibility of estimating cloudy-sky surface longwave net radiation using satellite-derived surface shortwave net radiation. Remote Sen. 2018, 10, 596. [Google Scholar] [CrossRef]
- Gusain, H.S.; Singh, D.K.; Mishra, V.D.; Arora, M.K. Estimation of net radiation flux of antarctic ice sheet in East dronning Maud land, Antarctica, during clear sky days using remote sensing and meteorological data. Remote Sens. Earth Syst. Sci. 2018, 1, 89–99. [Google Scholar] [CrossRef]
- Seyednasrollah, B.; Kumar, M.; Link, T.E. On the role of vegetation density on net snow cover radiation at the forest floor. J. Geophys. Res. Atmos. 2013, 118, 8359–8374. [Google Scholar] [CrossRef]
- Seyednasrollah, B.; Kumar, M. Effects of tree morphometry on net snow cover radiation on forest floor for varying vegetation densities. J. Geophys. Res. Atmos. 2013, 118, 12508–12521. [Google Scholar] [CrossRef]
- Xu, J.; Liang, S.; Ma, H.; He, T.; Zhang, Y.; Zhang, G. A daily 5-km all-sky sea-surface longwave radiation product based on statistically modified deep neural network and spatiotemporal analysis for 1981–2018. Remote Sens. Environ. 2023, 290, 113550. [Google Scholar] [CrossRef]
- Hu, A.F.; Xie, S.L.; Li, T. Soil parameter inversion modeling using deep learning algorithms and its application to settlement prediction: A comparative study. Acta Geotech. 2023, 18, 5597–5618. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Verma, N.; Maurya, S.P.; Kant, R. Comparison of neural networks techniques to predict subsurface parameters based on seismic inversion: A machine learning approach. Earth Sci. Inform. 2024, 17, 1031–1052. [Google Scholar] [CrossRef]
- Rainio, O.; Teuho, J.; Klén, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 2024, 14, 6086. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhang, Y.; Liang, S.; Wohlfahrt, G.; Arain, A.; Cescatti, A.; Georgiadis, T.; Jia, K.; Kiely, G.; Lund, M.; et al. Empirical estimation of daytime net radiation from shortwave radiation and ancillary information. Agric. For. Meteorol. 2015, 211, 23–36. [Google Scholar] [CrossRef]
- Guo, X.; Yao, Y.; Zhang, Y.; Lin, Y.; Jiang, B.; Jia, K.; Zhang, X.; Xie, X.; Zhang, L.; Shang, K.; et al. Discrepancies in the simulated global terrestrial latent heat flux from glass and merra-2 surface net radiation products. Remote Sens. 2020, 12, 2763. [Google Scholar] [CrossRef]
Station | Longitude/°E | Latitude/°N | Elevation/m | Type |
---|---|---|---|---|
A’ rou | 100.4643 | 38.0473 | 3033 | Grassland |
Daman | 100.3722 | 38.8555 | 1556 | Cropland |
Dashalong | 98.9406 | 38.8399 | 3739 | Grassland |
Huazhaizi | 100.3201 | 38.7659 | 1731 | Desert |
Desert | 100.9872 | 42.1135 | 1054 | Desert |
Mixed forest | 101.1335 | 41.9903 | 874 | Mixed forest |
Jingyangling | 101.116 | 37.8384 | 3750 | Grassland |
Sidaoqiao | 101.1374 | 42.0012 | 873 | Shrubs |
Yakou | 100.2421 | 38.0142 | 4147 | Grassland |
Zhangye wetland | 100.4464 | 38.9751 | 1460 | Wetland |
Type | Variable Name | Minimum | Maximum | Unit | Time Span |
---|---|---|---|---|---|
Time | DOY | 1 | 365 | ||
Locations | 5 km grid longitude | 97.1 | 101.95 | D | |
5 km grid latitude | 37.7 | 42.7 | D | ||
Vegetation descriptors (FY-3) | NDVI | −1 | 1 | 2018–2020 | |
Climate variables (CLDAS 2.0) | PRS | 0 | 113.15 | kPa | 2018–2020 |
SHU | 0 | 0.03 | kg/kg | ||
SSRA | −200 | 500 | W/m2 | ||
WIN | 0 | 20 | m/s | ||
TAVG | 0 | 350 | K | ||
TMIN | 0 | 350 | K | ||
TMAX | 0 | 350 | K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, S.; He, Q.; Zhu, L.; Yu, M.; Gu, Y.; Zhou, M. A Cross-Resolution Surface Net Radiative Inversion Based on Transfer Learning Methods. Remote Sens. 2024, 16, 2450. https://doi.org/10.3390/rs16132450
Miao S, He Q, Zhu L, Yu M, Gu Y, Zhou M. A Cross-Resolution Surface Net Radiative Inversion Based on Transfer Learning Methods. Remote Sensing. 2024; 16(13):2450. https://doi.org/10.3390/rs16132450
Chicago/Turabian StyleMiao, Shuqi, Qisheng He, Liujun Zhu, Mingxiao Yu, Yuhan Gu, and Mingru Zhou. 2024. "A Cross-Resolution Surface Net Radiative Inversion Based on Transfer Learning Methods" Remote Sensing 16, no. 13: 2450. https://doi.org/10.3390/rs16132450
APA StyleMiao, S., He, Q., Zhu, L., Yu, M., Gu, Y., & Zhou, M. (2024). A Cross-Resolution Surface Net Radiative Inversion Based on Transfer Learning Methods. Remote Sensing, 16(13), 2450. https://doi.org/10.3390/rs16132450