Pseudopolar Format Matrix Description of Near-Range Radar Imaging and Fractional Fourier Transform
Abstract
:1. Introduction
2. Short-Range Discrete Fourier Imaging
3. Short-Range Discrete Fractional Fourier Imaging
4. Matric Representation for Discrete Fourier and Fractional Fourier Transforms
4.1. Discrete Pseudopolar Format Matrix
4.2. Discrete Fractional Fourier Transform Matrix
5. Results
5.1. Numerical Simulation Validation
5.2. Experimental Data Validation
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sato, M. Near range radar and its application to near surface geophysics and disaster mitigation. J. Earth Sci. 2015, 26, 858–863. [Google Scholar] [CrossRef]
- Dine, F. Evaluation of the Utility of Radar Data to Provide Model Parameters for Energy System Analysis. Master’s Thesis, University of Applied Sciences, Stuttgart, Germany, March 2022. [Google Scholar]
- Lu, Z.; Kwoun, O.; Rykhus, R. Interferometric synthetic aperture radar (InSAR): Its past, present and future. Photogramm. Eng. Remote Sens. 2007, 73, 217. [Google Scholar]
- Richter, N.; Froger, J.L. The role of Interferometric Synthetic Aperture Radar in detecting, mapping, monitoring, and modelling the volcanic activity of Piton de la Fournaise, La Réunion: A review. Remote Sens. 2020, 12, 1019. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications, and future. Signal Process. 2016, 128, 389–408. [Google Scholar] [CrossRef]
- Wang, G.; Ye, J.C.; De Man, B. Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2020, 2, 737–748. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, W.; Feng, Y.; Li, Y.; Zhao, C.; Ren, Y.; Shao, L. Deep-learned regularization and proximal operator for image compressive sensing. IEEE Trans. Image Process. 2021, 30, 7112–7126. [Google Scholar] [CrossRef]
- Berger, Z. Satellite Hydrocarbon Exploration: Interpretation and Integration Techniques; Springer: New York, NY, USA, 2012. [Google Scholar]
- Rosu, F.; Anghel, A.; Ciochină, S.; Cacoveanu, R.; Datcu, M. Near-Range Multipath Mitigation Methodology for Multistatic SAR Applications Using Matched-Adaptive Filters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3204–3214. [Google Scholar] [CrossRef]
- Nitti, D.O.; Bovenga, F.; Chiaradia, M.T.; Greco, M.; Pinelli, G. Feasibility of using synthetic aperture radar to aid UAV navigation. Sensors 2015, 15, 18334–18359. [Google Scholar] [CrossRef]
- Zhang, W. Three-dimensional through-the-wall imaging with multiple-input multiple-output (MIMO) radar. J. Electromagn. Waves Appl. 2014, 28, 1935–1943. [Google Scholar] [CrossRef]
- Narayanan, R.M.; Gebhardt, E.T.; Broderick, S.P. Through-wall single and multiple target imaging using MIMO radar. Electronics 2017, 6, 70. [Google Scholar] [CrossRef]
- Hu, X.; Tong, N.; Zhang, Y.; Hu, G.; He, X. Multiple-input–multiple-output radar super-resolution three-dimensional imaging based on a dimension-reduction compressive sensing. IET Radar Sonar Navig. 2016, 10, 757–764. [Google Scholar] [CrossRef]
- Clark, J.; Fierro, R. Mobile robotic sensors for perimeter detection and tracking. ISA Trans. 2007, 46, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.A.; Grosu, A.L.; Czernin, J. Technology Insight: Advances in molecular imaging and an appraisal of PET/CT scanning. Nat. Clin. Pract. Oncol. 2008, 5, 160–170. [Google Scholar] [CrossRef]
- Najjar, R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef]
- Łoginoff, J.; Augustynowicz, K.; Świąder, K.; Ostaszewska, S.; Morawski, P.; Pactwa, F.; Popińska, Z. Advancements in Radiology and Diagnostic Imaging. J. Educ. Health Sport. 2023, 33, 45–51. [Google Scholar] [CrossRef]
- Pham, T.H.; Kim, K.H.; Hong, I.P. A study on millimeter wave SAR imaging for non-destructive testing of rebar in reinforced concrete. Sensors 2022, 22, 8030. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Sengupta, A. A review of the concept, applications and implementation issues of terahertz spectral imaging technique. IETE Tech. Rev. 2022, 39, 471–489. [Google Scholar] [CrossRef]
- Zou, L.; Liu, H.; Alani, A.M.; Fang, G. Surface Permittivity Estimation of Southern Utopia Planitia by High Frequency RoPeR in Tianwen-1 Mars Exploration. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–9. [Google Scholar] [CrossRef]
- Das, S.; Dey, A.; Pal, A.; Roy, N. Applications of artificial intelligence in machine learning: Review and prospect. Int. J. Comput. Appl. 2015, 115, 31–41. [Google Scholar] [CrossRef]
- Helal, S.; Sarieddeen, H.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.S. Signal processing and machine learning techniques for terahertz sensing: An overview. IEEE Signal Process. Mag. 2022, 39, 42–62. [Google Scholar] [CrossRef]
- Malhotra, I.; Jha, K.R.; Singh, G. Terahertz antenna technology for imaging applications: A technical review. Int. J. Microw. Wirel. Technol. 2018, 10, 271–290. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, F.; Zhao, E.; Zhang, D.; Pan, S. High-resolution phased array radar imaging by photonics-based broadband digital beamforming. Opt. Express 2019, 27, 13194–13203. [Google Scholar] [CrossRef]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Chennai, India, 2004. [Google Scholar]
- Zhuge, X.; Yarovoy, A.G. Study on two-dimensional sparse MIMO UWB arrays for high resolution near-field imaging. IEEE Trans. Antennas Propag. 2012, 60, 4173–4182. [Google Scholar] [CrossRef]
- Zhuge, X.; Yarovoy, A.G. Sparse multiple-input multiple-output arrays for high-resolution near-field ultra-wideband imaging. IET Microw. Antennas Propag. 2011, 5, 1552–1562. [Google Scholar] [CrossRef]
- Fortuny-Guasch, J. A novel 3-D subsurface radar imaging technique. IEEE Trans. Geosci. Remote Sens. 2002, 40, 443–452. [Google Scholar] [CrossRef]
- Fortuny, J.; Sieber, A.J. Three-dimensional synthetic aperture radar imaging of a fir tree: First results. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1006–1014. [Google Scholar] [CrossRef]
- Yang, H.; Li, T.; Li, N.; He, Z.; Liu, Q.H. Efficient near-field imaging for single-borehole radar with widely separated transceivers. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5327–5337. [Google Scholar] [CrossRef]
- Fortuny, J.; Sieber, A.J. Fast algorithm for a near-field synthetic aperture radar processor. IEEE Trans. Antennas Propag. 1994, 42, 1458–1460. [Google Scholar] [CrossRef]
- Zhuge, X.; Yarovoy, A.G.; Savelyev, T.; Ligthart, L. Modified Kirchhoff migration for UWB MIMO array-based radar imaging. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2692–2703. [Google Scholar] [CrossRef]
- Morrow, I.L.; van Genderen, P. Effective imaging of buried dielectric objects. IEEE Trans. Geosci. Remote Sens. 2002, 40, 943–949. [Google Scholar] [CrossRef]
- Zhu, R.; Zhou, J.; Jiang, G.; Fu, Q. Range migration algorithm for near-field MIMO-SAR imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2280–2284. [Google Scholar] [CrossRef]
- Ahmad, F.; Amin, M.G.; Mandapati, G. Autofocusing of through-the-wall radar imagery under unknown wall characteristics. IEEE Trans. Image Process. 2007, 16, 1785–1795. [Google Scholar] [CrossRef]
- Cheney, M.; Borden, B. Fundamentals of Radar Imaging; CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 2009; Volume 79. [Google Scholar]
- Bracewell, R. Two-Dimensional Convolution. In Fourier Analysis and Imaging; Springer: Boston, MA, USA, 2003. [Google Scholar]
- Kidera, S.; Sakamoto, T.; Sato, T. Extended imaging algorithm based on aperture synthesis with double-scattered waves for UWB radars. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5128–5139. [Google Scholar] [CrossRef]
- Cheney, M. A mathematical tutorial on synthetic aperture radar. SIAM Rev. 2001, 43, 301–312. [Google Scholar] [CrossRef]
- Fromenteze, T.; Yurduseven, O.; Berland, F.; Decroze, C.; Smith, D.R.; Yarovoy, A.G. A transverse spectrum deconvolution technique for MIMO short-range Fourier imaging. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6311–6324. [Google Scholar] [CrossRef]
- Bamler, R. Principles of synthetic aperture radar. Surv. Geophys. 2000, 21, 147–157. [Google Scholar] [CrossRef]
- Gini, F.; De Maio, A.; Patton, L. Waveform Design and Diversity for Advanced Radar Systems; Institution of Engineering and Technology: London, UK, 2012. [Google Scholar]
- Brigham, E.O. The Fast Fourier Transform and Its Applications; Pearson: Upper Saddle River, NJ, USA, 1988; Volume 448. [Google Scholar]
- Brandwood, D. Fourier transforms in radar and signal processing. Artech House 2012. [Google Scholar]
- Zou, L.; Sato, M. An efficient and accurate GB-SAR imaging algorithm based on the fractional Fourier transform. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9081–9089. [Google Scholar] [CrossRef]
- Almeida, L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Arikan, O.; Kutay, M.A.; Bozdagt, G. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 1996, 44, 2141–2150. [Google Scholar] [CrossRef]
- Yetik, I.S.; Nehorai, A. Beamforming using the fractional Fourier transform. IEEE Trans. Signal Process. 2003, 51, 1663–1668. [Google Scholar] [CrossRef]
- McBride, A.C.; Kerr, F.H. On Namias’s fractional Fourier transforms. IMA J. Appl. Math. 1987, 39, 159–175. [Google Scholar] [CrossRef]
- Namias, V. The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 1980, 25, 241–265. [Google Scholar] [CrossRef]
- Bailey, D.H.; Swarztrauber, P.N. The fractional Fourier transform and applications. SIAM Rev. 1991, 33, 389–404. [Google Scholar] [CrossRef]
- Zayed, A.I. On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Process. Lett. 1996, 3, 310–311. [Google Scholar] [CrossRef]
- Candan, C.; Kutay, M.A.; Ozaktas, H.M. The discrete fractional Fourier transform. IEEE Trans. Signal Process. 2000, 48, 1329–1337. [Google Scholar] [CrossRef]
- Santhanam, B.; McClellan, J.H. The discrete rotational Fourier transform. IEEE Trans. Signal Process. 1996, 44, 994–998. [Google Scholar] [CrossRef]
- Atakishiyev, N.M.; Vicent, L.E.; Wolf, K.B. Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math. 1999, 107, 73–95. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Li, Y.; Alani, A.M. Pseudopolar Format Matrix Description of Near-Range Radar Imaging and Fractional Fourier Transform. Remote Sens. 2024, 16, 2482. https://doi.org/10.3390/rs16132482
Zou L, Li Y, Alani AM. Pseudopolar Format Matrix Description of Near-Range Radar Imaging and Fractional Fourier Transform. Remote Sensing. 2024; 16(13):2482. https://doi.org/10.3390/rs16132482
Chicago/Turabian StyleZou, Lilong, Ying Li, and Amir M. Alani. 2024. "Pseudopolar Format Matrix Description of Near-Range Radar Imaging and Fractional Fourier Transform" Remote Sensing 16, no. 13: 2482. https://doi.org/10.3390/rs16132482
APA StyleZou, L., Li, Y., & Alani, A. M. (2024). Pseudopolar Format Matrix Description of Near-Range Radar Imaging and Fractional Fourier Transform. Remote Sensing, 16(13), 2482. https://doi.org/10.3390/rs16132482