Different Vegetation Covers Leading to the Uncertainty and Consistency of ET Estimation: A Case Study Assessment with Extended Triple Collocation
Abstract
:1. Introduction
- How is the performance of three products according to the results of the ETC method?
- Does the ET merging method yield a superior ET product compared to individual products?
- How does the performance of the ET merging method vary under different vegetation covers?
2. Materials and Methods
2.1. Data Sources
2.2. Extended Triple Collocation (ETC) Method
2.3. Evapotranspiration Merging
2.4. Statistical Analysis
2.5. Flowchart
3. Results
3.1. Uncertainties in AET Datasets based on ETC Approach
3.1.1. Spatial Consistency of AET Products Globally
3.1.2. Correlation Coefficient Distribution of AET Products
3.1.3. Best Performing ET Products on Each Grid
3.1.4. Uncertainty under Different Vegetation Coverages
3.2. Merged ET Dataset and the Trends
3.3. Assessment of AET Products and Merged ET
3.3.1. Assessment of AET Products
3.3.2. Uncertainties Compared to In Situ Data under Different Vegetation Covers
4. Discussion
4.1. Evaluation of Merged ET and Individual Products
4.2. The Effect of the Uncertainty
4.3. Comparison with Other Studies and Application
4.4. Limitations and Future Works
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Biome Types | Dataset | R2 | MAE (mm/mon) | RMSE (mm/mon) | SI |
---|---|---|---|---|---|
Tundra | GLEAM | 0.4774 | 22.3898 | 30.8501 | 0.8916 |
FLDAS | 0.5214 | 28.8692 | 38.4059 | 0.8228 | |
MEP | 0.5463 | 21.2863 | 30.9052 | 0.8731 | |
Merged ET | 0.5603 | 18.8669 | 27.8232 | 0.8704 | |
Forest | GLEAM | 0.1568 | 24.3116 | 29.2547 | 0.2556 |
FLDAS | 0.1032 | 31.8802 | 38.9362 | 0.8553 | |
MEP | 0.0687 | 22.5617 | 29.9345 | 0.6543 | |
Merged ET | 0.2527 | 23.9891 | 29.0292 | 0.8614 | |
Savanna | GLEAM | 0.4279 | 23.5890 | 33.1950 | 0.8523 |
FLDAS | 0.3318 | 29.7965 | 42.0997 | 0.9003 | |
MEP | 0.3565 | 28.4786 | 36.0082 | 0.8528 | |
Merged ET | 0.4352 | 23.7498 | 33.0523 | 0.8777 | |
Grassland | GLEAM | 0.5806 | 13.4673 | 21.2547 | 0.8039 |
FLDAS | 0.6648 | 11.6636 | 19.0468 | 0.7642 | |
MEP | 0.5596 | 15.3106 | 21.4564 | 0.7289 | |
Merged ET | 0.6633 | 11.9154 | 19.1637 | 0.8070 | |
Shrubland | GLEAM | 0.0271 | 21.6798 | 51.5772 | 0.5767 |
FLDAS | 0.6241 | 7.6778 | 11.4932 | 0.5064 | |
MEP | 0.2390 | 16.4039 | 22.6190 | 0.5252 | |
Merged ET | 0.6380 | 7.1514 | 11.0493 | 0.6290 | |
Croplands | GLEAM | 0.6664 | 15.1924 | 21.4366 | 0.8105 |
FLDAS | 0.5567 | 24.7039 | 33.2429 | 0.8043 | |
MEP | 0.6836 | 17.8241 | 24.2335 | 0.8159 | |
Merged ET | 0.6002 | 16.5585 | 24.1886 | 0.8574 | |
All types | GLEAM | 0.5222 | 18.4798 | 27.3480 | 0.8418 |
FLDAS | 0.5587 | 23.8607 | 32.9354 | 0.8281 | |
MEP | 0.5848 | 18.0764 | 25.8383 | 0.8541 | |
Merged ET | 0.5939 | 16.4510 | 24.5225 | 0.8743 |
References
- Xue, J.; Lei, J.; Chang, J.; Zeng, F.; Zhang, Z.; Sun, H. A causal structure-based multiple-criteria decision framework for evaluating the water-related ecosystem service tradeoffs in a desert oasis region. J. Hydrol. Reg. Stud. 2022, 44, 101226. [Google Scholar] [CrossRef]
- Wang, S.; Chang, J.; Xue, J.; Sun, H.; Zeng, F.; Liu, L.; Liu, X.; Li, X. Coupling behavioral economics and water management policies for agricultural land-use planning in basin irrigation districts: Agent-based socio-hydrological modeling and application. Agric. Water Manag. 2024, 298, 108845. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Du, S.; Liang, C.; Sun, H.; Wang, K.; Wang, J.; Li, H.; Xue, J.; Chen, F.; Tuo, Y.; Disse, M. Evaluating the potential benefits of float solar photovoltaics through the water footprint recovery period. J. Clean. Prod. 2024, 446, 141399. [Google Scholar] [CrossRef]
- Lu, M.; Sun, H.; Cheng, L.; Li, S.; Qin, H.; Yi, S.; Zhang, H.; Zhang, W. Heterogeneity in vegetation recovery rates post-flash droughts across different ecosystems. Environ. Res. Lett. 2024, 19, 074028. [Google Scholar] [CrossRef]
- Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.; Hirschi, M.; Martens, B.; Dolman, A.J.; Fisher, J.B. The WACMOS-ET project–Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [Google Scholar] [CrossRef]
- Xue, B.-L.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [Google Scholar] [CrossRef]
- Huang, Q.; Qin, G.; Zhang, Y.; Tang, Q.; Liu, C.; Xia, J.; Chiew, F.H.S.; Post, D. Using Remote Sensing Data—Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments. Water Resour. Res. 2020, 56, e2020WR028205. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiew, F.H.S.; Liu, C.; Tang, Q.; Xia, J.; Tian, J.; Kong, D.; Li, C. Can Remotely Sensed Actual Evapotranspiration Facilitate Hydrological Prediction in Ungauged Regions Without Runoff Calibration? Water Resour. Res. 2020, 56, e2019WR026236. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens MF, P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.; Sivapalan, M.; et al. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef]
- Li, Z.W.; Yu, Q.G.; Jiu, X.Y.; Tha, P.U.K.; Pierre, G.; Yu, C.B. Uncertainties Caused by Resistances in Evapotranspiration Estimation Using High-Density Eddy Covariance Measurements. J. Hydrometeorol. 2020, 21, 1349–1365. [Google Scholar]
- Yin, L.; Wang, X.; Feng, X.; Fu, B.; Chen, Y. A Comparison of SSEBop-Model-Based Evapotranspiration with Eight Evapotranspiration Products in the Yellow River Basin, China. Remote Sens. 2020, 12, 2528. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Han, Z.; Scanlon, B.R.; Sun, Z.; Han, P.; Hou, A. Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resour. Res. 2019, 55, 8608–8630. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y. Calibration-Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resour. Res. 2021, 57, e2021WR029691. [Google Scholar] [CrossRef]
- Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Awange, J.L.; Ferreira, V.G.; Forootan, E.; Khandu; Andam-Akorful, S.; Agutu, N.; He, X. Uncertainties in remotely sensed precipitation data over Africa. Int. J. Climatol. 2016, 36, 303–323. [Google Scholar] [CrossRef]
- Dong, J.; Lei, F.; Wei, L. Triple collocation based multi-source precipitation merging. Front. Water 2020, 2, 498793. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, L.; Zheng, H.; Zhang, B.; Li, M. Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau. Sci. Total Environ. 2019, 660, 1555–1564. [Google Scholar] [CrossRef]
- Khan, M.S.; Liaqat, U.W.; Baik, J.; Choi, M. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. For. Meteorol. 2018, 252, 256–268. [Google Scholar] [CrossRef]
- Kim, S.; Pham, H.T.; Liu, Y.Y.; Marshall, L.; Sharma, A. Improving the combination of satellite soil moisture data sets by considering error cross correlation: A comparison between triple collocation (TC) and extended double instrumental variable (EIVD) alternatives. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7285–7295. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Zheng, H.; Zhang, B.; Fan, L.; Chi, H.; Yan, B.; Wang, X. Consistency and uncertainty of gridded terrestrial evapotranspiration estimations over China. J. Hydrol. 2022, 612, 128245. [Google Scholar] [CrossRef]
- Xu, T.; Guo, Z.; Xia, Y.; Ferreira, V.G.; Liu, S.; Wang, K.; Yao, Y.; Zhang, X.; Zhao, C. Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. J. Hydrol. 2019, 578, 124105. [Google Scholar] [CrossRef]
- Peel, M.C.; McMahon, T.A.; Finlayson, B.L. Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resour. Res. 2010, 46, W09508. [Google Scholar] [CrossRef]
- Xia, Y.; Hobbins, M.T.; Mu, Q.; Ek, M.B. Evaluation of NLDAS-2 evapotranspiration against tower flux site observations. Hydrol. Process. 2015, 29, 1757–1771. [Google Scholar] [CrossRef]
- Volk, J.M.; Huntington, J.L.; Melton, F.S.; Allen, R.; Anderson, M.; Fisher, J.B.; Kilic, A.; Ruhoff, A.; Senay, G.B.; Minor, B. Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nat. Water 2024, 2, 193–205. [Google Scholar] [CrossRef]
- Hong, S.; Deng, H.; Zheng, Z.; Deng, Y.; Chen, X.; Gao, L.; Chen, Y.; Liu, M. The influence of variations in actual evapotranspiration on drought in China’s Southeast River basin. Sci. Rep. 2023, 13, 21336. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, M.; De Caro, D.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Irrig. Sci. 2023, 41, 5–22. [Google Scholar] [CrossRef]
- Qingming, W.; Shan, J.; Jiaqi, Z.; Guohua, H.; Yong, Z.; Yongnan, Z.; Xin, H.; Haihong, L.; Lizhen, W.; Fan, H. Effects of vegetation restoration on evapotranspiration water consumption in mountainous areas and assessment of its remaining restoration space. J. Hydrol. 2022, 605, 127259. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef]
- Hajji, I.; Nadeau, D.F.; Music, B.; Anctil, F.; Wang, J. Application of the maximum entropy production model of evapotranspiration over partially vegetated water-limited land surfaces. J. Hydrometeorol. 2018, 19, 989–1005. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, H.; Zhu, M.; Wang, J.; Zhang, W. An R package of maximum entropy production model to estimate 41 years of global evapotranspiration. J. Hydrol. 2022, 614, 128639. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85. [Google Scholar] [CrossRef]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of global actual evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Koppa, A.; Rains, D.; Hulsman, P.; Poyatos, R.; Miralles, D.G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 2022, 13, 1912. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Badgley, G.; Fisher, J.B.; Jiménez, C.; Tu, K.P.; Vinukollu, R. On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeorol. 2015, 16, 1449–1455. [Google Scholar] [CrossRef]
- Liu, H.; Xin, X.; Su, Z.; Zeng, Y.; Lian, T.; Li, L.; Yu, S.; Zhang, H. Intercomparison and evaluation of ten global ET products at site and basin scales. J. Hydrol. 2023, 617, 128887. [Google Scholar] [CrossRef]
- Dong, Z.; Hu, H.; Wei, Z.; Liu, Y.; Xu, H.; Yan, H.; Chen, L.; Li, H.; Khan, M.Y.A. Estimating the actual evapotranspiration of different vegetation types based on root distribution functions. Front. Earth Sci. 2022, 10, 893388. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Gash, J. An analytical model of rainfall interception by forests. Q. J. R. Meteorolog. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- Valente, F.; David, J.; Gash, J. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. J. Hydrol. 1997, 190, 141–162. [Google Scholar] [CrossRef]
- Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Fang, H.; Wei, S.; Jiang, C.; Scipal, K. Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method. Remote Sens. Environ. 2012, 124, 610–621. [Google Scholar] [CrossRef]
- Cao, M.; Wang, W.; Xing, W.; Wei, J.; Chen, X.; Li, J.; Shao, Q. Multiple sources of uncertainties in satellite retrieval of terrestrial actual evapotranspiration. J. Hydrol. 2021, 601, 126642. [Google Scholar] [CrossRef]
- Isabelle, P.E.; Viens, L.; Nadeau, D.; Anctil, F.; Wang, J.; Maheu, A. Sensitivity analysis of the maximum entropy production method to model evaporation in boreal and temperate forests. Geophys. Res. Lett. 2021, 48, e2020GL091919. [Google Scholar] [CrossRef]
- Halim, M.A.; Chen, H.Y.; Thomas, S.C. Stand age and species composition effects on surface albedo in a mixedwood boreal forest. Biogeosciences 2019, 16, 4357–4375. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Zheng, C.; Zeng, Z. Dense flux observations reveal the incapability of evapotranspiration products to capture the heterogeneity of evapotranspiration. J. Hydrol. 2023, 622, 129743. [Google Scholar] [CrossRef]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Colliander, A.; Halverson, G.; Tu, K.; Famiglietti, J.S. SMAP soil moisture improves global evapotranspiration. Remote Sens. Environ. 2018, 219, 1–14. [Google Scholar] [CrossRef]
- Stettz, S.; Zaitchik, B.F.; Ademe, D.; Musie, S.; Simane, B. Estimating variability in downwelling surface shortwave radiation in a tropical highland environment. PLoS ONE 2019, 14, e0211220. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, C.; Hu, J.; Mao, H.; Duan, Z.; Qu, C.; Li, R.; Wang, M.; Song, X. Discovering Optimal Triplets for Assessing the Uncertainties of Satellite-Derived Evapotranspiration Products. Remote Sens. 2023, 15, 3215. [Google Scholar] [CrossRef]
- Jongmin, P.; Jongjin, B.; Minha, C. Triple collocation-based multi-source evaporation and transpiration merging. Agric. For. Meteorol. 2023, 331, 109353. [Google Scholar]
- Jie, Y.; Qin, H.; Jia, B.; Tian, M.; Lou, S.; Liu, G.; Huang, Y. A multiscale attribution framework for separating the effects of cascade and individual reservoirs on runoff. Sci. Total Environ. 2024, 933, 172784. [Google Scholar] [CrossRef]
- Shahid, M.; Cong, Z.; Zhang, D. Understanding the impacts of climate change and human activities on streamflow: A case study of the Soan River basin, Pakistan. Theor. Appl. Climatol. 2018, 134, 205–219. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Vermeulen, A.; Dong, J.; Duan, Z. Triple collocation-based merging of multi-source gridded evapotranspiration data in the Nordic Region. Agric. For. Meteorol. 2023, 335, 109451. [Google Scholar]
- Sun, H.; Sun, X.; Chen, J.; Deng, X.; Yang, Y.; Qin, H.; Chen, F.; Zhang, W. Different types of meteorological drought and their impact on agriculture in Central China. J. Hydrol. 2023, 627, 130423. [Google Scholar]
- Ershadi, A.; McCabe, M.; Evans, J.; Wood, E.F. Impact of model structure and parameterization on Penman–Monteith type evaporation models. J. Hydrol. 2015, 525, 521–535. [Google Scholar] [CrossRef]
- Melo, D.; Anache, J.; Borges, V.; Miralles, D.; Martens, B.; Fisher, J.; Nóbrega, R.; Moreno, A.; Cabral, O.; Rodrigues, T. Are remote sensing evapotranspiration models reliable across South American ecoregions? Water Resour. Res. 2021, 57, e2020WR028752. [Google Scholar] [CrossRef]
- Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.; Mu, Q. The WACMOS-ET project–Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Ezenne, G.I.; Eyibio, N.U.; Tanner, J.L.; Asoiro, F.U.; Obalum, S.E. An overview of uncertainties in evapotranspiration estimation techniques. J. Agrometeorol. 2023, 25, 173–182. [Google Scholar]
- Wenbin, Z.; Shengrong, T.; Jiaxing, W.; Shaofeng, J.; Zikun, S. Multi-scale evaluation of global evapotranspiration products derived from remote sensing images: Accuracy and uncertainty. J. Hydrol. 2022, 611, 127982. [Google Scholar]
- Gu, C.; Ma, J.; Zhu, G.; Yang, H.; Zhang, K.; Wang, Y.; Gu, C. Partitioning evapotranspiration using an optimized satellite-based ET model across biomes. Agric. For. Meteorol. 2018, 259, 355–363. [Google Scholar] [CrossRef]
- He, Y.; Yu, H.; Ozaki, A.; Dong, N.; Zheng, S. Influence of plant and soil layer on energy balance and thermal performance of green roof system. Energy 2017, 141, 1285–1299. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Huntingford, C.; Li, Y.; Zeng, Z.; Wang, X.; Ciais, P.; McVicar, T.R.; Peng, S.; Ottlé, C. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Chang. 2018, 8, 640–646. [Google Scholar] [CrossRef]
- Hobeichi, S.; Abramowitz, G.; Evans, J.; Ukkola, A. Derived Optimal Linear Combination Evapotranspiration (DOLCE): A global gridded synthesis ET estimate. Hydrol. Earth Syst. Sci. 2018, 22, 1317–1336. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, Y.; Liu, C.; Chiew, F.H.; Tian, J.; Ma, N.; Zhang, X. Can indirect evaluation methods and their fusion products reduce uncertainty in actual evapotranspiration estimates? Water Resour. Res. 2022, 58, e2021WR031069. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Chen, J.; Liu, S.; Jia, K.; Zhang, X.; Xiao, Z.; Fisher, J.B.; Mu, Q. Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agric. For. Meteorol. 2017, 242, 55–74. [Google Scholar] [CrossRef]
- Wang, J.; Bras, R. A model of evapotranspiration based on the theory of maximum entropy production. Water Resour. Res. 2011, 47, W03521. [Google Scholar] [CrossRef]
- Wang, J.; Bras, R.L. A model of surface heat fluxes based on the theory of maximum entropy production. Water Resour. Res. 2009, 45, W11422. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Sun, H.; Yang, Y.; Sun, X.; Xiong, M.; Ouyang, S.; Li, H.; Qin, H.; Zhang, W. Different Vegetation Covers Leading to the Uncertainty and Consistency of ET Estimation: A Case Study Assessment with Extended Triple Collocation. Remote Sens. 2024, 16, 2484. https://doi.org/10.3390/rs16132484
Li X, Sun H, Yang Y, Sun X, Xiong M, Ouyang S, Li H, Qin H, Zhang W. Different Vegetation Covers Leading to the Uncertainty and Consistency of ET Estimation: A Case Study Assessment with Extended Triple Collocation. Remote Sensing. 2024; 16(13):2484. https://doi.org/10.3390/rs16132484
Chicago/Turabian StyleLi, Xiaoxiao, Huaiwei Sun, Yong Yang, Xunlai Sun, Ming Xiong, Shuo Ouyang, Haichen Li, Hui Qin, and Wenxin Zhang. 2024. "Different Vegetation Covers Leading to the Uncertainty and Consistency of ET Estimation: A Case Study Assessment with Extended Triple Collocation" Remote Sensing 16, no. 13: 2484. https://doi.org/10.3390/rs16132484
APA StyleLi, X., Sun, H., Yang, Y., Sun, X., Xiong, M., Ouyang, S., Li, H., Qin, H., & Zhang, W. (2024). Different Vegetation Covers Leading to the Uncertainty and Consistency of ET Estimation: A Case Study Assessment with Extended Triple Collocation. Remote Sensing, 16(13), 2484. https://doi.org/10.3390/rs16132484