Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022
Abstract
:1. Introduction
2. Observation Instruments and Data Processing
3. Observation Results
3.1. Geomagnetic Conditions
3.2. HCOPAR Observations
3.3. ICON Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultan, P.J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. 1996, 101, 26875–26891. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–556. [Google Scholar]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Wang, W.; Qian, L.; Cai, X.; Coster, A.J.; Goncharenko, L.P. Significant mid- and low-latitude ionospheric disturbances characterized by dynamic EIA, EPBs, and SED variations during the 13–14 March 2022 geomagnetic storm. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031375. [Google Scholar] [CrossRef]
- Karan, D.K.; Martinis, C.R.; Eastes, R.W.; Daniell, R.E.; McClintock, W.E.; Huang, C.-S. GOLD observations of equatorial plasma bubbles reaching midlatitudes during the 23 April 2023 geomagnetic storm. Space Weather 2024, 22, e2023SW003847. [Google Scholar] [CrossRef]
- Sori, T.; Otsuka, Y.; Shinbori, A.; Nishioka, M.; Perwitasari, S. Geomagnetic conjugacy of plasma bubbles extending to mid-latitudes during a geomagnetic storm on March 1, 2013. Earth Planets Space 2022, 74, 120. [Google Scholar] [CrossRef]
- Dao, T.; Otsuka, Y.; Shiokawa, K.; Nishioka, M.; Yamamoto, M.; Buhari, S.M.; Abdullah, M.; Husin, A. Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes. J. Geophys. Res. Space Phys. 2017, 122, 7504–7518. [Google Scholar] [CrossRef]
- Huba, J.D.; Liu, H.-L.; McInerney, J. Modeling the development of an equatorial plasma bubble during a midnight temperature maximum with SAMI3/WACCM-X. Geophys. Res. Lett. 2023, 50, e2023GL104388. [Google Scholar] [CrossRef]
- Sun, W.; Li, G.; Lei, J.; Zhao, B.; Hu, L.; Zhao, X.; Li, Y.; Xie, H.; Li, Y.; Ning, B.; et al. Ionospheric super bubbles near sunset and sunrise during the 26–28 February 2023 geomagnetic storm. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031864. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, I.S.; Bertoni, F.; Reinisch, B.W.; Kherani, E.A.; Sobral, J.H.A. Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil. J. Geophys. Res. 2012, 117, A05321. [Google Scholar] [CrossRef]
- Jin, H.; Zou, S.; Chen, G.; Yan, C.; Zhang, S.; Yang, G. Formation and evolution of low-latitude F region field-aligned irregularities during the 7–8 September 2017 storm: Hainan coherent scatter phased array radar and digisonde observations. Space Weather 2018, 16, 648–659. [Google Scholar] [CrossRef]
- Ram, S.T.; Yamamoto, M.; Tsunoda, R.T.; Chau, H.D.; Hoang, T.L.; Damtie, B.; Wassaie, M.; Yatini, C.Y.; Manik, T.; Tsugawa, T. Characteristics of large-scale wave structure observed from African and Southeast Asia longitudinal sectors. J. Geophys. Res. Space Phys. 2014, 119, 1–10. [Google Scholar] [CrossRef]
- Kil, H.; Heelis, R.A.; Paxton, L.J.; Oh, S.J. Formation of a plasma depletion shell in the equatorial ionosphere. J. Geophys. Res. 2009, 114, A11302. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shiokawa, K.; Ogawa, T.; Wilkinson, P. Geomagnetic conjugate observations of equatorial airglow depletions. Geophys. Res. Lett. 2002, 29, 1753. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Livingston, R.C.; Rino, C.L. Evidence of a velocity shear in bulk plasma motion associated with the post-sunset rise of the equatorial F-layer. Geophys. Res. Lett. 1981, 8, 807–810. [Google Scholar] [CrossRef]
- Woodman, R.F.; Pingree, J.E.; Swartz, W.E. Spread-F-like irregularities observed by the Jicamarca radar during the day-time. J. Atmos. Terr. Phys. 1985, 47, 867–874. [Google Scholar] [CrossRef]
- Chau, J.L.; Woodman, R.F. Interferometric and dual beam observations of daytime Spread-F-like irregularities over Jicamarca. Geophys. Res. Lett. 2001, 28, 3581–3584. [Google Scholar] [CrossRef]
- Sekar, R.; Chakrabarty, D.; Sarkhel, S.; Patra, A.K.; Devasia, C.V.; Kelley, M.C. Identification of active fossil bubbles based on coordinated VHF radar and airglow measurement. Ann. Geophys. 2007, 25, 2099–2102. [Google Scholar] [CrossRef]
- He, Z.; Chen, G.; Yan, C.; Zhang, S.; Yang, G.; Li, Y.; Gong, W.; Wang, J.; Zhang, M. Imaging radar observations of the daytime F-region irregularities in low-latitudes of China. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030878. [Google Scholar] [CrossRef]
- Tulasi Ram, S.; Ajith, K.K.; Yamamoto, M.; Otsuka, Y.; Yokoyama, T.; Niranjan, K.; Gurubaran, S. Fresh and evolutionary-type field-aligned irregularities generated near sunrise terminator due to overshielding electric fields. J. Geophys. Res. Space Phys. 2015, 120, 5922–5930. [Google Scholar] [CrossRef]
- Olugbon, B.; Oyeyemi, E.O.; Kascheyev, A.; Rabiu, A.B.; Obafaye, A.A.; Odeyemi, O.O.; Adewale, A.O. Daytime equatorial spread F-like irregularities detected by HF Doppler receiver and digisonde. Space Weather 2021, 19, e2020SW002676. [Google Scholar] [CrossRef]
- Huang, C.S.; de La Beaujardiere, O.; Roddy, P.A.; Hunton, D.E.; Ballenthin, J.O.; Hairston, M.R. Long-lasting daytime equatorial plasma bubbles observed by the C/NOFS satellite. J. Geophys. Res. 2013, 118, 2398–2408. [Google Scholar] [CrossRef]
- Chen, G.; Jin, H.; Yan, J.; Zhang, S.; Li, G.; Yokoyama, T.; Yang, G.; Yan, C.; Wu, C.; Wang, J.; et al. Low-latitude daytime F region irregularities observed in two geomagnetically quiets days by the Hainan coherent scatter phased array radar (HCOPAR). J. Geophys. Res. Space Phys. 2017, 122, 2645–2654. [Google Scholar] [CrossRef]
- Kil, H.; Paxton, L.J.; Lee, W.K.; Jee, G. Daytime evolution of equatorial plasma bubbles observed by the first Republic of China satellite. Geophys. Res. Lett. 2019, 46, 5021–5027. [Google Scholar] [CrossRef]
- Kil, H.; Lee, W.K.; Paxton, L.J. Origin and distribution of daytime electron density irregularities in the low-latitude F region. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028343. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Yang, S.; Zhao, X.; Hu, L.; Sun, W.; Wu, Z.; Ning, B.; Liu, L.; Li, G. Unexpected high occurrence of daytime F region backscatter plume structures over low latitude Sanya and their possible origin. Geophys. Res. Lett. 2020, 47, e2020GL090517. [Google Scholar] [CrossRef]
- Gao, S.; Cai, H.; Zhan, W.; Wan, X.; Xiong, C.; Zhang, H.; Xu, C. Characterization of local time dependence of equatorial spread F responses to substorms in the American sector. J. Space Weather Space Clim. 2023, 13, 2. [Google Scholar] [CrossRef]
- Wang, C. New chains of space weather monitoring stations in China. Space Weather 2010, 8, S08001. [Google Scholar] [CrossRef]
- Chen, G.; Jin, H.; Yan, J.-Y.; Cui, X.; Zhang, S.-D.; Yan, C.-X.; Yang, G.-T.; Lan, A.-L.; Gong, W.-L.; Qiao, L.; et al. Hainan coherent scatter phased array radar (HCOPAR): System design and ionospheric irregularity observations. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4757–4765. [Google Scholar] [CrossRef]
- Sun, W.; Wu, B.; Wu, Z.; Hu, L.; Zhao, X.; Zheng, J.; Xie, H.; Yang, S.; Ning, B.; Li, G. IONISE: An ionospheric observational network for irregularity and scintillation in East and Southeast Asia. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028055. [Google Scholar] [CrossRef]
- Li, J.; Ma, G.; Maruyama, T.; Wan, Q.; Fan, J.; Zhang, J.; Wang, X. ROTI Keograms based on CMONOC to characterize the ionospheric irregularities in 2014. Earth Planets Space 2022, 74, 149. [Google Scholar] [CrossRef]
- Heelis, R.A.; Stoneback, R.A.; Perdue, M.D.; Depew, M.D.; Morgan, W.A.; Mankey, M.W.; Lippincott, C.R.; Harmon, L.L. Ion velocity measurements for the ionospheric connections explorer. Space Sci. Rev. 2017, 212, 615–629. [Google Scholar] [CrossRef]
- Xie, H.; Li, G.; Zhao, X.; Hu, L.; Sun, W.; Li, Y.; Ning, B. The occurrence characteristics of daytime irregularities in the low latitude topside F region at solar minimum revealed by ICON. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030957. [Google Scholar] [CrossRef]
- Harding, B.J.; Makela, J.J.; Englert, C.R.; Marr, K.D.; Harlander, J.M.; England, S.L.; Immel, T.J. The MIGHTI wind retrieval algorithm: Description and verification. Space Sci. Rev. 2017, 212, 585–600. [Google Scholar] [CrossRef]
- Christensen, A.B.; Paxton, L.J.; Avery, S.; Craven, J.; Crowley, G.; Humm, D.C.; Kil, H.; Meier, R.R.; Meng, C.-I.; Morrison, D.; et al. Initial observations with the Global Ultraviolet Imager (GUVI) on the NASA TIMED satellite mission. J. Geophys. Res. 2003, 108, 1451. [Google Scholar] [CrossRef]
- Strickland, D.J.; Meier, R.R.; Walterscheid, R.L.; Craven, J.D.; Christensen, A.B.; Paxton, L.J.; Morrison, D.; Crowley, G. Quiet-time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow. J. Geophys. Res. 2004, 109, A01302. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fejer, B.G.; Gonzales, C.A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 1979, 6, 301–304. [Google Scholar] [CrossRef]
- Jaggi, R.K.; Wolf, R.A. Self-consistent calculation of the motion of the sheet of ions in the magnetosphere. J. Geophys. Res. 1973, 78, 2852–2866. [Google Scholar] [CrossRef]
- Nishida, A. Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 1968, 73, 5549–5559. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, B.; Li, G.; Wan, W. Electric field penetration into Earth’s ionosphere: A brief review for 2000–2013. Sci. Bull. 2015, 60, 748–761. [Google Scholar] [CrossRef]
- Manoj, C.; Maus, S. A real-time forecast service for the ionospheric equatorial zonal electric field. Space Weather 2012, 10, S09002. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, M.; Yan, C.; Zhang, Q.; Yang, G.; Li, Y.; Zhang, S.; Gong, W.; He, Z. Downward drifting F-region irregularity observed above an eastward drifting one before midnight on 4 March 2014. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031008. [Google Scholar] [CrossRef]
- Gjerloev, J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, 117, A09213. [Google Scholar] [CrossRef]
- Newell, P.T.; Gjerloev, J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 2011, 116, A12211. [Google Scholar] [CrossRef]
- Chun, F.K.; Knipp, D.J.; McHarg, M.G.; Lacey, J.R.; Lu, G.; Emery, B.A. Joule heating patterns as a function of polar cap index. J. Geophys. Res. 2002, 107, 1119. [Google Scholar] [CrossRef]
- Hu, P.; Chen, G.; Li, G.; Yan, C.; Zhang, S.; Yang, G.; Li, Y.; He, Z.; Jia, W.; Zhang, M. Double coherent scatter radars observations of the daytime F-region irregularities in low-latitudes on 29 May 2017. Space Weather 2022, 20, e2022SW003272. [Google Scholar] [CrossRef]
- Jin, H.; Yan, C.; Yang, G.; Huang, F.; Xie, H.; Zhao, X.; Sun, W.; Li, Y.; Hozumi, K.; Jiao, J. Interaction between equatorial to low-latitude postmidnight F-region irregularities and LSTIDs in China during geomagnetic disturbances based on ground-based instruments. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030286. [Google Scholar] [CrossRef]
- Sun, L.; Xu, J.; Wang, W.; Yuan, W.; Li, Q.; Jiang, C. A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China. J. Geophys. Res. Space Phys. 2016, 121, 11495–11517. [Google Scholar] [CrossRef]
- Carmo, C.S.; Pi, X.; Denardini, C.M.; Figueiredo, C.A.O.B.; Verkhoglyadova, O.P.; Picanço, G.A.S. Equatorial plasma bubbles observed at dawn and after sunrise over South America during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029934. [Google Scholar] [CrossRef]
- Wu, K.; Xu, J.; Yue, X.; Xiong, C.; Wang, W.; Yuan, W.; Wang, C.; Zhu, Y.; Luo, J. Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time. Ann. Geophys. 2020, 38, 163–177. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, W.; Lin, D.; Huang, C.; Zhang, Y. Penetrating electric field simulated by the MAGE and comparison with ICON observation. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030467. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L.; de Paula, E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res. 1999, 104, 19859–19869. [Google Scholar] [CrossRef]
- Fujiwara, H.; Maeda, S.; Fukunishi, H.; Fuller-Rowell, T.J.; Evans, D.S. Global variations of thermospheric winds and temperatures caused by substorm energy injection. J. Geophys. Res. 1996, 101, 225–239. [Google Scholar] [CrossRef]
- Aa, E.; Huang, W.; Liu, S.; Ridley, A.; Zou, S.; Shi, L.; Chen, Y.; Shen, H.; Yuan, T.; Li, J.; et al. Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather 2018, 16, 321–331. [Google Scholar] [CrossRef]
- Sun, W.; Li, G.; Zhang, S.-R.; Hu, L.; Dai, G.; Zhao, B.; Otsuka, Y.; Zhao, X.; Xie, H.; Li, Y. Regional ionospheric super bubble induced by significant upward plasma drift during the 1 December 2023 geomagnetic storm. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032430. [Google Scholar] [CrossRef]
- Abdu, M.A. Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Prog. Earth Planet. Sci. 2019, 6, 11. [Google Scholar] [CrossRef]
- Azzouzi, I.; Migoya-Orue, Y.; Amory-Mazaudier, C.; Fleury, R.; Radicella, S.M.; Touzani, A. Signature of solar event at middle and low latitudes in the European-African sector, during geomagnetic storms. Adv. Space Res. 2015, 56, 2040–2055. [Google Scholar] [CrossRef]
- Nayak, C.; Tsai, L.-C.; Su, S.-Y.; Galkin, I.; Caton, R.; Groves, K. Suppression of ionospheric scintillation during St. Patrick’s 24 Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: A case study. Adv. Space Res. 2016, 60, 396–405. [Google Scholar] [CrossRef]
- Yu, T.; Cai, X.; Ren, Z.; Wang, Z.; Pedatella, N.M.; Jin, Y. Investigation of interhemispheric asymmetry of the thermospheric composition observed by GOLD during the first strong geomagnetic storm in solar-cycle 25, 1: IMF By effects. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031429. [Google Scholar] [CrossRef]
- Rishbeth, H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Terr. Phys. 1998, 60, 1385–1402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Chen, G.; Yan, C.; Zhang, S.; Yang, G.; Zhang, Q.; Gong, W.; He, Z. Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022. Remote Sens. 2024, 16, 2738. https://doi.org/10.3390/rs16152738
Hu P, Chen G, Yan C, Zhang S, Yang G, Zhang Q, Gong W, He Z. Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022. Remote Sensing. 2024; 16(15):2738. https://doi.org/10.3390/rs16152738
Chicago/Turabian StyleHu, Pengfei, Gang Chen, Chunxiao Yan, Shaodong Zhang, Guotao Yang, Qiang Zhang, Wanlin Gong, and Zhiqiu He. 2024. "Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022" Remote Sensing 16, no. 15: 2738. https://doi.org/10.3390/rs16152738
APA StyleHu, P., Chen, G., Yan, C., Zhang, S., Yang, G., Zhang, Q., Gong, W., & He, Z. (2024). Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022. Remote Sensing, 16(15), 2738. https://doi.org/10.3390/rs16152738