Cube: An Open-Source Software for Clock Offset Estimation and Precise Point Positioning with Ambiguity Resolution
Abstract
:1. Introduction
2. Methodology
2.1. The Ionospheric-Free Model
2.2. The Satellite Code Bias Extraction Model
2.3. The Integer-Recovered Clock Model
2.4. The Decoupled Clock Model
3. Cube Software
4. Performance of Cube
4.1. Convergence Speed of Satellite Clock
4.2. Precision of Decoupled Clocks
4.3. Analysis of Positioning Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, F.H.; Zumberge, J.F. An introduction to GIPSY/OASIS-II. JPL Publication D-11088; Jet Propulsion Labg: Pasadena, CA, USA, 1997. [Google Scholar]
- Liu, J.; Ge, M. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 2, 603–609. [Google Scholar]
- Ge, M.; Chen, J.; Gendt, G. EPOS-RT: Software for real-time GNSS data processing. In Proceedings of the EGU General Assembly 2009, Vienna, Austria, 19–24 April 2009. [Google Scholar]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software; Version 5.2; Bern Open Publishing: Bern, Germany, 2015. [Google Scholar]
- Li, X.; Han, X.; Li, X.; Liu, G.; Feng, G.; Wang, B.; Zheng, H. GREAT-UPD: An open-source software for uncalibrated phase delay estimation based on multi-GNSS and multi-frequency observations. GPS Solut. 2021, 25, 66. [Google Scholar] [CrossRef]
- Harris, R.B.; Mach, R.G. The GPSTk: An open source GPS toolkit. GPS Solut. 2007, 2, 145–150. [Google Scholar] [CrossRef]
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In Proceedings of the International Symposium on GPS/GNSS, Seogwiposi, Republic of Korea, 4–6 November 2009. [Google Scholar]
- Sanz, J.; Rovira-Garcia, A.; Hernandez-Pajares, M.; Juan, J.M.; Ventura-Traveset, J.; Lopez-Echazarreta, C.; Hein, G. The ESA/UPC GNSS-Lab Tool (gLAB): An advanced educational and professional package for GNSS data processing and analysis. In Proceedings of the Toulouse Space Show, Toulouse, French, 25–28 June 2012. [Google Scholar]
- Laurichesse, D.; Privat, A. An open-source PPP client implementation for the CNES PPP-WIZARD demonstrator. In Proceedings of the ION GNSS+ 2015, Tampa, FL, USA, 14–18 September 2015. [Google Scholar]
- Bahadur, B.; Nohutcu, M. PPPH: A MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solut. 2018, 22, 113. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut. 2018, 22, 33. [Google Scholar] [CrossRef]
- Geng, J.; Chen, X.; Pan, Y.; Mao, S.; Li, C.; Zhou, J.; Zhang, K. PRIDE PPP-AR: An open-source software for GPS PPP ambiguity resolution. GPS Solut. 2019, 23, 91. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, G.; Ou, J.; Liu, G.; Wang, S.; Guo, A. MG-APP: An open-source software for multi-GNSS precise point positioning and application analysis. GPS Solut. 2020, 24, 66. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, B.; Zhang, X. SUPREME: An open-source single-frequency uncombined precise point positioning software. GPS Solut. 2021, 25, 86. [Google Scholar] [CrossRef]
- Kouba, J.; Héroux, P. Precise point positioning using IGS orbit and clock products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Malys, S.; Jensen, P.A. Geodetic point positioning with GPS carrier beat phase data from the CASA UNO Experiment. Geophys. Res. Lett. 1990, 17, 651–654. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Ren, X.; Zuo, X.; Pan, Y. Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solut. 2016, 20, 771–782. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Y.; Yuan, Y. PPP-RTK based on undifferenced and uncombined observations: Theoretical and practical aspects. J. Geod. 2018, 93, 8. [Google Scholar] [CrossRef]
- Liu, T.; Chen, H.; Song, C.; Wang, Y.; Yuan, P.; Geng, T.; Jiang, W. Beidou-3 precise point positioning ambiguity resolution with B1I/B3I/B1C/B2a/B2b phase observable-specific signal bias and satellite B1I/B3I legacy clock. Adv. Space Res. 2023, 72, 10. [Google Scholar] [CrossRef]
- Collins, P.; Bisnath, S.; Lahaye, F.; Héroux, P. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navig. J. Inst. Navig. 2010, 57, 123–135. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Laurichesse, D.; Mercier, F.; Berthias, J.; Cerri, L. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navig. J. Inst. Navig. 2009, 56, 135–149. [Google Scholar] [CrossRef]
- Geng, J.; Wen, Q.; Chen, G.; Dumitraschkewitz, P.; Zhang, Q. All-frequency IGS phase clock/bias product combination to improve PPP ambiguity resolution. J. Geod. 2024, 98, 48. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Liu, G.; Yuan, Y.; Freeshah, M.; Zhang, K.; Zhou, F. BDS multi-frequency PPP ambiguity resolution with new B2a/B2b/B2a + b signals and legacy B1I/B3I signals. J. Geod. 2020, 94, 107. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y.; Yuan, Y.; Wu, J.; Li, X.; Zhang, K.; Hu, J. Real-time estimation of multi-GNSS integer recovery clock with undifferenced ambiguity resolution. J. Geod. 2019, 93, 2515–2528. [Google Scholar] [CrossRef]
- Naciri, N.; Bisnath, S. An uncombined triple-frequency user implementation of the decoupled clock model for PPP-AR. J. Geod. 2021, 95, 60. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Li, P.; Ma, F.; Pan, L. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University. GPS Solut. 2020, 24, 15. [Google Scholar] [CrossRef]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J.C. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. J. Geod. 2012, 86, 991–1003. [Google Scholar] [CrossRef]
- Geng, J.; Chen, X.; Pan, Y.; Zhao, Q. A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University. J. Geod. 2019, 93, 2053–2067. [Google Scholar] [CrossRef]
- Schaer, S.; Villiger, A.; Arnold, D.; Dach, R.; Prange, L.; Jäggi, A. The CODE ambiguity-fixed clock and phase bias analysis products: Generation, properties, and performance. J. Geod. 2021, 95, 81. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, Y. A method to accelerate the convergence of satellite clock offset estimation considering the time-varying code biases. Remote Sens. 2021, 13, 2714. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, Y. Generating GPS decoupled clock products for precise point positioning with ambiguity resolution. J. Geod. 2022, 96, 6. [Google Scholar] [CrossRef]
- McCarthy, D.D. IERS Conventions (1996). IERS Tech. Note 1996, 21, 1–95. [Google Scholar]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Géodésique 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Niell, A.E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. Solid Earth 1996, 101, 3227–3246. [Google Scholar] [CrossRef]
- Chang, X.W.; Yang, X.; Zhou, T. MLAMBDA: A modified LAMBDA method for integer least-squares estimation. J. Geod. 2005, 79, 552–565. [Google Scholar] [CrossRef]
Items | Strategies |
---|---|
Frequencies | GPS L1 and L2 |
Observations | Code and carrier phase |
A priori noise | Configurable (code: 0.3 m, carrier phase: 0.003 m) |
Receiver datum | Configurable (NRC1) |
Cut-off elevation | Configurable (10°) |
Phase wind-up | Corrected for carrier-phase observations |
Relativistic effect | Corrected |
Differential code bias | CODE P1-C1 products |
Tidal displacements | Solid earth tide [34], ocean tide loading, and pole tide |
Phase center offset and variations | igs14.atx |
Receiver coordinates | Fixed to IGS weekly solutions at the server end and estimated at the user end. In PPP static mode, coordinates are estimated as constants. In kinematic mode, coordinates are estimated as white noise parameters. |
Earth rotation parameters | Configurable (IGS final products) |
Satellite orbits | Configurable (IGS final products) |
Satellite clocks | Estimated as white noises at the server end and fixed to IGS final products, CNES/CLS final products, or the estimated products in this study at the user end |
Receiver clocks | Estimated as white noises |
Zenith troposphere delays | Estimated as random-walk noises with respect to the Saastamoinen model [35], and the Niell Mapping Function [36] is used |
Horizontal troposphere gradients | Estimated as random-walk noises or ignored |
Ambiguities | Estimated as constants over each continuous session |
Integer ambiguity fixing | Rounding directly at the server end, rounding and MLAMBDA [37] are applied to fix ambiguity at the user end |
Estimator | Least squares filter |
Processing mode | Post-processing |
PPP Model | RMS (cm) | Fixing Rate (%) | CT (min) | ||
---|---|---|---|---|---|
East | North | Up | |||
IF | 1.48 | 1.16 | 3.49 | / | 40.8 |
IRC | 1.08 | 1.05 | 3.64 | 90.4 | 26.3 |
DCK | 0.86 | 0.90 | 3.18 | 94.0 | 31.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yuan, Y.; Guo, X.; Wang, K.; Xiao, G. Cube: An Open-Source Software for Clock Offset Estimation and Precise Point Positioning with Ambiguity Resolution. Remote Sens. 2024, 16, 2739. https://doi.org/10.3390/rs16152739
Liu S, Yuan Y, Guo X, Wang K, Xiao G. Cube: An Open-Source Software for Clock Offset Estimation and Precise Point Positioning with Ambiguity Resolution. Remote Sensing. 2024; 16(15):2739. https://doi.org/10.3390/rs16152739
Chicago/Turabian StyleLiu, Shuai, Yunbin Yuan, Xiaosong Guo, Kezhi Wang, and Gongwei Xiao. 2024. "Cube: An Open-Source Software for Clock Offset Estimation and Precise Point Positioning with Ambiguity Resolution" Remote Sensing 16, no. 15: 2739. https://doi.org/10.3390/rs16152739
APA StyleLiu, S., Yuan, Y., Guo, X., Wang, K., & Xiao, G. (2024). Cube: An Open-Source Software for Clock Offset Estimation and Precise Point Positioning with Ambiguity Resolution. Remote Sensing, 16(15), 2739. https://doi.org/10.3390/rs16152739