Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Mathematical Models
2.3. Simulated Points Generation
2.4. MLP Model
2.5. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, X.; Sun, K.; Li, Q. A fast and robust scan-line search algorithm for object-to-image projection of airborne pushbroom images. Photogramm. Eng. Remote Sens. 2015, 81, 565–572. [Google Scholar] [CrossRef]
- Zhang, L.; Gruen, A. Multi-image matching for DSM generation from IKONOS imagery. ISPRS J. Photogramm. Remote Sens. 2006, 60, 195–211. [Google Scholar] [CrossRef]
- Kang, Y.; Pan, L.; Sun, M.; Liu, X.; Chen, Q. Destriping high-resolution satellite imagery by improved moment matching. Int. J. Remote Sens. 2017, 38, 6346–6365. [Google Scholar] [CrossRef]
- Zhang, L.; Gruen, A. Automatic DSM Generation from Linear Array Imagery Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 133–138. [Google Scholar]
- Angel, Y.; Turner, D.; Parkes, S.; Malbeteau, Y.; Lucieer, A.; McCabe, M.F. Automated georectification and mosaicking of UAV-based hyperspectral imagery from push-Broom sensors. Remote Sens. 2020, 12, 34. [Google Scholar] [CrossRef]
- Mirmazloumi, S.M.; Kakooei, M.; Mohseni, F.; Ghorbanian, A.; Amani, M.; Crosetto, M.; Monserrat, O. ELULC-10, a 10 m European Land Use and Land Cover Map Using Sentinel and Landsat Data in Google Earth Engine. Remote Sens. 2022, 14, 3041. [Google Scholar] [CrossRef]
- Jannati, M.; Zoej, M.J.V.; Mokhtarzade, M. Epipolar resampling of cross-track pushbroom satellite imagery using the rigorous sensor model. Sensors 2017, 17, 129. [Google Scholar] [CrossRef]
- Poli, D.; Li, Z.; Gruen, A. Spot-5/Hrs Stereo Images Orientation and Automated Dsm Generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2003, 35, 421–432. [Google Scholar]
- Granshaw, S.I. Photogrammetric Terminology: Third Edition. Photogramm. Rec. 2016, 31, 210–252. [Google Scholar] [CrossRef]
- Marsetič, A.; Oštir, K.; Fras, M.K. Automatic orthorectification of high-resolution optical satellite images using vector roads. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6035–6047. [Google Scholar] [CrossRef]
- Yi, H.; Chen, X.; Wang, D.; Du, S.; Guo, N. Methods for the Epipolarity Analysis of Pushbroom Satellite Images Based on the Rational Function Model. IEEE Access 2020, 8, 103973–103983. [Google Scholar] [CrossRef]
- Gong New Methods for 3D Reconstructions Using High Resolution Satellite Data. 2021. Available online: http://elib.uni-stuttgart.de/bitstream/11682/11470/1/PhD_thesis_Ke_Gong.pdf (accessed on 18 October 2022).
- Nezhad, S.S.A.; Zoej, M.J.V.; Ghorbanian, A. A fast non-iterative method for the object to image space best scanline determination of spaceborne linear array pushbroom images. Adv. Space Res. 2021, 68, 3584–3593. [Google Scholar] [CrossRef]
- Wang, M.; Hu, F.; Li, J. Epipolar resampling of linear pushbroom satellite imagery by a new epipolarity model. ISPRS J. Photogramm. Remote Sens. 2011, 66, 347–355. [Google Scholar] [CrossRef]
- Gong, D.; Han, Y.; Zhang, L. Quantitative Assessment of the Projection Trajectory-Based Epipolarity Model and Epipolar Image Resampling for Linear-Array Satellite Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 89–94. [Google Scholar] [CrossRef]
- Jannati, M.; Zoej, M.J.V.; Mokhtarzade, M. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model. ISPRS J. Photogramm. Remote Sens. 2018, 137, 1–14. [Google Scholar] [CrossRef]
- Habib, A.F.; Bang, K.I.; Kim, C.J.; Shin, S.W. True ortho-photo generation from high resolution satellite imagery. In Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2006; pp. 641–656. [Google Scholar] [CrossRef]
- Beyer, R.A.; Alexandrov, O.; McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 2018, 5, 537–548. [Google Scholar] [CrossRef]
- Mo, D.; Zhang, Y.; Wang, T.; Yang, G.; Xia, Q. A Back Projection Algorithm for Linear Array Imageries Based on the Constraints of Object-space Relation. Cehui Xuebao/Acta Geod. Cartogr. Sin. 2017, 46, 583–592. [Google Scholar] [CrossRef]
- Yavari, S.; Zoej, M.J.V.; Salehi, B. An automatic optimum number of well-distributed ground control lines selection procedure based on genetic algorithm. ISPRS J. Photogramm. Remote Sens. 2018, 139, 46–56. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D. Efficient orthoimage generation from ADS40 level 0 products. J. Remote Sens. 2007, 11, 247. [Google Scholar]
- Chen, L.C.; Rau, J.Y. A Unified Solution for Digital Terrain Model and Orthoimage Generation from SPOT Stereopairs. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1243–1252. [Google Scholar] [CrossRef]
- Wang, M.; Hu, F.; Li, J.; Pan, J. A Fast Approach to Best Scanline Search of Airborne Linear Pushbroom Images. Photogramm. Eng. Remote Sens. 2009, 75, 1059–1067. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Lan, C.; Xing, S.; Hou, Y.; Lyu, L. Orthorectification of Planetary Linear Pushbroom Images Based on an Improved Back-Projection Algorithm. IEEE Geosci. Remote Sens. Lett. 2019, 16, 854–858. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Lan, C.; Hou, Y.; Miao, J.; Xing, S. An Efficient Geometric Rectification Method for Planetary Linear Pushbroom Images Based on Fast Back Projection Algorithm. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Xing, S.; Lan, C. A Robust Ground-to-Image Transformation Algorithm and Its Applications in the Geometric Processing of Linear Pushbroom Images. Earth Space Sci. 2019, 6, 1805–1830. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Xing, S.; Lan, C. A Generic Pushbroom Sensor Model for Planetary Photogrammetry. Earth Space Sci. 2020, 7, e2019EA001014. [Google Scholar] [CrossRef]
- Huang, R.; Zheng, S.; Hu, K. Registration of aerial optical images with LiDAR data using the closest point principle and collinearity equations. Sensors 2018, 18, 1770. [Google Scholar] [CrossRef]
- Seiz, G.; Poli, D.; Gruen, A.; Baltsavias, E.P.; Roditakis, A. Satellite- and ground-based multi-view photogrammetric deter-mination of 3D cloud geometry. Int. Arch. Photogramm. Remote Sens. 2004, 34, 101–107. [Google Scholar]
- Safdarinezhad, A.; Zoej, M.J.V. An optimized orbital parameters model for geometric correction of space images. Adv. Space Res. 2015, 55, 1328–1338. [Google Scholar] [CrossRef]
- Zoej, M.J.V. Photogrammetric Evaluation of Space Linear Array Imagery for Medium Scale Topographic Mapping. Ph.D. Thesis. 1997. Available online: https://theses.gla.ac.uk/4777/1/1997zoejphd1.pdf (accessed on 18 October 2022).
- Park, Y.S.; Lek, S. Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. Dev. Environ. Model. 2016, 28, 123–140. [Google Scholar] [CrossRef]
- Warsito, B.; Santoso, R.; Suparti; Yasin, H. Cascade Forward Neural Network for Time Series Prediction. J. Phys. Conf. Ser. 2018, 1025, 012097. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Tosun, E.; Aydin, K.; Bilgili, M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures. Alexandria Eng. J. 2016, 55, 3081–3089. [Google Scholar] [CrossRef]
- Salgado, C.M.; Dam, R.S.F.; Salgado, W.L.; Werneck, R.R.A.; Pereira, C.M.N.A.; Schirru, R. The comparison of different multilayer perceptron and General Regression Neural Networks for volume fraction prediction using MCNPX code. Appl. Radiat. Isot. 2020, 162, 109170. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Okuku, C.O.; Njau, E.N. Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya. Complexity 2020, 2020, 9570789. [Google Scholar] [CrossRef]
- Jensen, R.R.; Hardin, P.J.; Yu, G. Artificial neural networks and remote sensing. Geogr. Compass 2009, 3, 630–646. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, I.; Faisal, M.; Nazir, H.M.; Hussain, T.; Shad, M.Y.; Shoukry, A.M.; Gani, S.H. Forecasting drought Using Multilayer Perceptron Artificial Neural Network Model. Adv. Meteorol. 2017, 2017, 5681308. [Google Scholar] [CrossRef]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Lourakis, M.I.A.; Argyros, A.A. Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? In Proceedings of the IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005; Volume II, pp. 1526–1531. [Google Scholar] [CrossRef]
- Sheela, K.G.; Deepa, S.N. Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. 2013, 2013, 425740. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sain, S.R.; Vapnik, V.N. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996; Volume 38. [Google Scholar] [CrossRef]
Inputs | Outputs | ||
---|---|---|---|
Preprocessing and data preparation | Space resection using the MPC model (Equation (2)) |
|
|
SCOPs and SCPs generation using CE (Equation (1)) |
|
| |
Processing steps of BSD | Training phase of the MLP model (Equation (3)) |
|
|
Prediction (testing) phase of the MLP (Equations (3)–(5)) |
|
|
Image. | Sensor | Region | Dimension (Pixel) | Resolution (m) | Central Latitude | Central Longitude |
---|---|---|---|---|---|---|
ISB | IKONOS | Sao Paulo, Brazil | 8300 × 8600 | 0.8 | −23.54 | −46.63 |
PMA | Pleiades 1A | Melbourne, Australia | 6000 × 7000 | 0.5 | −37.77 | 144.86 |
PAU | Pleiades 1B | Annapolis, USA | 6057 × 5636 | 0.5 | 38.98 | −76.49 |
QJI | QuickBird | Jaipur, India | 6000 × 6000 | 0.6 | 26.92 | 75.78 |
SJB | SPOT 6 | Jaicos, Brazil | 6200 × 6600 | 1.5 | −7.26 | −41.27 |
SAN | SPOT 7 | Amsterdam, Netherland | 5824 × 6616 | 1.5 | 52.37 | 4.91 |
SCB | SPOT 7 | Curitiba, Brazil | 2597 × 1463 | 6 | −24.63 | −49.69 |
WBU | Worldview 1 | Boulder, USA | 6000 × 6000 | 0.5 | 40.02 | −105.28 |
WSA | Worldview 2 | Sydney, Australia | 6000 × 6000 | 0.5 | −33.84 | 151.20 |
WSU | Worldview 2 | SanDiego, USA | 3996 × 4015 | 0.5 | 32.72 | −117.16 |
Number of SCOPs | Number of Layers | Number of Neurons | RMSE (Pixel) | Computation Time (s) | drmax (pixel) | Number of MLP Parameters |
---|---|---|---|---|---|---|
50 | 1 | 10 | 0.06 | 3.27 | 0.15 | 41 |
100 | 1 | 10 | 0.01 | 3.40 | 0.02 | 41 |
1 | 20 | 0.05 | 4.20 | 0.17 | 81 | |
300 | 1 | 10 | 0.02 | 3.90 | 0.07 | 41 |
1 | 20 | 0.02 | 4.84 | 0.06 | 81 | |
1 | 30 | 0.02 | 5.62 | 0.06 | 121 | |
1 | 40 | 0.02 | 6.36 | 0.08 | 161 | |
1 | 50 | 0.09 | 7.75 | 0.03 | 201 | |
2 | 10 | 0.06 | 5.70 | 0.37 | 151 | |
2 | 20 | 0.14 | 19.63 | 0.69 | 501 | |
500 | 1 | 10 | 0.03 | 3.95 | 0.09 | 41 |
1 | 20 | 0.02 | 4.69 | 0.07 | 81 | |
1 | 30 | 0.001 | 5.95 | 0.003 | 121 | |
1 | 40 | 0.001 | 6.64 | 0.005 | 161 | |
1 | 50 | 0.002 | 7.76 | 0.01 | 201 | |
2 | 10 | 0.06 | 5.80 | 0.30 | 151 | |
2 | 20 | 0.05 | 21.48 | 0.15 | 501 | |
3 | 10 | 0.02 | 8.47 | 0.20 | 261 | |
1000 | 1 | 10 | 0.04 | 4.04 | 0.09 | 41 |
1 | 20 | 0.06 | 5.17 | 0.15 | 81 | |
1 | 30 | 0.05 | 6.81 | 0.16 | 121 | |
1 | 40 | 0.10 | 8.04 | 0.24 | 161 | |
1 | 50 | 0.02 | 9.72 | 0.08 | 201 | |
2 | 10 | 0.03 | 6.86 | 0.20 | 151 | |
2 | 20 | 0.01 | 26.40 | 0.09 | 501 | |
3 | 10 | 0.14 | 10.23 | 0.90 | 261 | |
4 | 10 | 0.02 | 17.83 | 0.93 | 371 | |
5 | 10 | 0.01 | 26.53 | 0.09 | 481 |
Datasets | Quantitative Measurements | Methods’ Name | ||||
---|---|---|---|---|---|---|
Newton Raphson (NR) [22] | Bisecting Window Search (BWS) [21] | ANN BSD [13] | OGP BSD [13] | Proposed Method (MLP) | ||
ISB | RMSE (pixel) | 5.840 × 10−10 | 0.57 | 0.29 | 0.29 | 0.015 |
Computation time (second) | 511.919 | 1490.505 | 3.295 | 6.812 | 3.29 | |
(pixel) | 1.727 × 10−9 | 1 | 0.61 | 0.57 | 0.043 | |
Number of SCOPs | - | - | 400 | 400 | 100 | |
Number of neurons | - | - | 10 | - | 9 | |
PMA | RMSE (pixel) | 1.057 × 10−9 | 0.58 | 0.30 | 0.30 | 0.003 |
Computation time (second) | 591.588 | 1413.097 | 3.427 | 7.941 | 3.31 | |
(pixel) | 2.616 × 10−9 | 1 | 0.67 | 0.67 | 0.007 | |
Number of SCOPs | - | - | 500 | 500 | 100 | |
Number of neurons | - | - | 10 | - | 10 | |
PAU | RMSE (pixel) | 9.561 × 10−10 | 0.58 | 0.30 | 0.30 | 0.003 |
Computation time (second) | 520.065 | 1294.618 | 3.398 | 7.640 | 2.92 | |
(pixel) | 1.203 × 10−9 | 1 | 0.67 | 0.77 | 0.010 | |
Number of SCOPs | - | - | 500 | 500 | 50 | |
Number of neurons | - | - | 10 | - | 10 | |
QJI | RMSE (pixel) | 4.401 × 10−10 | 0.58 | 0.30 | 0.30 | 0.002 |
Computation time (second) | 423.808 | 1320.126 | 3.815 | 7.839 | 3.23 | |
(pixel) | 1.162 × 10−9 | 1 | 0.72 | 0.69 | 0.006 | |
Number of SCOPs | - | - | 500 | 500 | 100 | |
Number of neurons | - | - | 10 | - | 10 | |
SJB | RMSE (pixel) | 6.182 × 10−10 | 0.58 | 0.30 | 0.30 | 0.002 |
Computation time (second) | 480.380 | 1335.430 | 3.776 | 9.959 | 3.01 | |
(pixel) | 2.184 × 10−9 | 1 | 0.73 | 0.63 | 0.005 | |
Number of SCOPs | - | - | 500 | 1000 | 100 | |
Number of neurons | - | - | 10 | - | 7 | |
SAN | RMSE (pixel) | 2.503 × 10−10 | 0.57 | 0.29 | 0.31 | 0.002 |
Computation time (second) | 471.247 | 1259.437 | 4.452 | 8.305 | 2.96 | |
(pixel) | 6.207 × 10−10 | 1 | 0.58 | 0.81 | 0.004 | |
Number of SCOPs | - | - | 700 | 500 | 100 | |
Number of neurons | - | - | 10 | - | 5 | |
SCB | RMSE (pixel) | 6.593 × 10−10 | 0.58 | 0.29 | 0.29 | 0.001 |
Computation time (second) | 412.186 | 883.381 | 3.387 | 7.070 | 3.13 | |
(pixel) | 2.379 × 10−9 | 1 | 0.61 | 0.55 | 0.003 | |
Number of SCOPs | - | - | 400 | 200 | 100 | |
Number of neurons | - | - | 10 | - | 9 | |
WBU | RMSE (pixel) | 1.181 × 10−9 | 0.57 | 0.29 | 0.28 | 0.002 |
Computation time (second) | 474.471 | 1376.620 | 3.576 | 7.967 | 2.96 | |
(pixel) | 2.756 × 10−9 | 1 | 0.52 | 0.52 | 0.005 | |
Number of SCOPs | - | - | 400 | 400 | 100 | |
Number of neurons | - | - | - | 7 | ||
WSA | RMSE (pixel) | 9.931 × 10−10 | 0.57 | 0.32 | 0.32 | 0.003 |
Computation time (second) | 470.185 | 1245.763 | 3.310 | 7.803 | 2.09 | |
(pixel) | 2.461 × 10−9 | 1 | 0.72 | 0.71 | 0.006 | |
Number of SCOPs | - | - | 500 | 500 | 100 | |
Number of neurons | - | - | 10 | - | 5 | |
WSU | RMSE (pixel) | 3.860 × 10−10 | 0.57 | 0.30 | 0.30 | 0.001 |
Computation time (second) | 483.562 | 1281.063 | 3.714 | 8.796 | 3.02 | |
(pixel) | 9.327 × 10−10 | 1 | 0.57 | 0.58 | 0.003 | |
Number of SCOPs | - | - | 500 | 500 | 100 | |
Number of neurons | - | - | 10 | - | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahooei Nezhad, S.S.; Valadan Zoej, M.J.; Khoshelham, K.; Ghorbanian, A.; Farnaghi, M.; Jamali, S.; Youssefi, F.; Gheisari, M. Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron. Remote Sens. 2024, 16, 2787. https://doi.org/10.3390/rs16152787
Ahooei Nezhad SS, Valadan Zoej MJ, Khoshelham K, Ghorbanian A, Farnaghi M, Jamali S, Youssefi F, Gheisari M. Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron. Remote Sensing. 2024; 16(15):2787. https://doi.org/10.3390/rs16152787
Chicago/Turabian StyleAhooei Nezhad, Seyede Shahrzad, Mohammad Javad Valadan Zoej, Kourosh Khoshelham, Arsalan Ghorbanian, Mahdi Farnaghi, Sadegh Jamali, Fahimeh Youssefi, and Mehdi Gheisari. 2024. "Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron" Remote Sensing 16, no. 15: 2787. https://doi.org/10.3390/rs16152787
APA StyleAhooei Nezhad, S. S., Valadan Zoej, M. J., Khoshelham, K., Ghorbanian, A., Farnaghi, M., Jamali, S., Youssefi, F., & Gheisari, M. (2024). Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron. Remote Sensing, 16(15), 2787. https://doi.org/10.3390/rs16152787