Large-Scale Mapping of Complex Forest Typologies Using Multispectral Imagery and Low-Density Airborne LiDAR: A Case Study in Pinsapo Fir Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Proposed Typology of the Pinsapo Fir Forests
2.4. Data Collection
2.4.1. Field Data
2.4.2. LiDAR Data
2.4.3. Multispectral Information
2.5. Forest Typology
2.5.1. Field Data Processing
2.5.2. LiDAR Data Processing
2.5.3. Spectral Data Processing
2.5.4. Model Variable Selection
2.5.5. Models Calibration and Validation
3. Results
3.1. Classification Models
3.2. Variable Importance for Pinsapo Fir Forest Types Classification
3.3. Pinsapo FIR Forest Types Map
4. Discussion
4.1. Model Performance Analysis
4.2. Pinsapo Fir Forest Types Classification
4.3. Pinsapo Fir Forest Map
4.4. Limitations and Future Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perry, D.A.; Oren, R.; Hart, S.C. Forest Ecosystems; JHU Press: Baltimore, MD, USA, 2008. [Google Scholar]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and Ecosystem Services in Forest Ecosystems: A Research Agenda for Applied Forest Ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Wu, C.; Acil, N.; Carvalhais, N.; Pugh, T.A.M.; Sadler, J.P.; Seidl, R. A Climate Risk Analysis of Earth’s Forests in the 21st Century. Science 2022, 377, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.C.; Oppenheimer, M.; Warren, R.; Hallegatte, S.; Kopp, R.E.; Pörtner, H.O.; Scholes, R.; Birkmann, J.; Foden, W.; Licker, R.; et al. IPCC Reasons for Concern Regarding Climate Change Risks. Nat. Clim. Chang. 2017, 7, 28–37. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of Global Change on Mediterranean Forests and Their Services. Forests 2017, 8, 463. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Oliva, J.; Vicente-Serrano, S.M. To Die or Not to Die: Early Warnings of Tree Dieback in Response to a Severe Drought. J. Ecol. 2015, 103, 44–57. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Martinez-Vilalta, J.; Cailleret, M.; Camarero, J.J.; Ewers, B.E.; Galbraith, D.; Gessler, A.; Grote, R.; Huang, C.; Levick, S.R. When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems 2016, 19, 1133–1147. [Google Scholar] [CrossRef]
- Linares, J.C. Biogeography and Evolution of Abies (Pinaceae) in the Mediterranean Basin: The Roles of Long-Term Climatic Change and Glacial Refugia. J. Biogeogr. 2011, 38, 619–630. [Google Scholar] [CrossRef]
- Valladares, A. Abetales de Abies Pinsapo Boiss. Bases Ecológicas Preliminares Para la Conservación de Los Tipos de Hábitat de Interés Comunitario en España, p. 9520. Available online: https://www.jolube.net/Habitat_Espana/documentos/9520.pdf (accessed on 20 July 2024).
- Cerrillo, R.N. Los Pinsapares en Andalucía (Ables Pinsapo Boiss.): Conservación y Sostenibilidad en el Siglo XXI; Servicio de Publicaciones Universidad de Córdoba: Córdoba, Spain, 2013. [Google Scholar]
- Arista, A.; Alaoui, M.L.; Knees, S.; Gardner, M. Abies Pinsapo. The IUCN Red. List. of Threatened Species 2011. Available online: https://www.iucnredlist.org/species/42295/10679577 (accessed on 20 July 2024).
- Navarro-Cerrillo, R.M.; Gazol, A.; Rodríguez-Vallejo, C.; Manzanedo, R.D.; Palacios-Rodríguez, G.; Camarero, J.J. Linkages between Climate, Radial Growth and Defoliation in Abies Pinsapo Forests from Southern Spain. Forests 2020, 11, 1002. [Google Scholar] [CrossRef]
- Cortés-Molino, Á.; Linares, J.C.; Viñegla, B.; Lechuga, V.; Salvo-Tierra, A.E.; Flores-Moya, A.; Fernández-Luque, I.; Carreira, J.A. Unexpected Resilience in Relict Abies Pinsapo Boiss Forests to Dieback and Mortality Induced by Climate Change. Front. Plant Sci. 2022, 13, 991720. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; González-Moreno, P.; Ruiz-Gómez, F.J.; Sánchez-Cuesta, R.; Gazol, A.; Camarero, J.J. Drought Stress and Pests Increase Defoliation and Mortality Rates in Vulnerable Abies Pinsapo Forests. For. Ecol. Manag. 2022, 504, 119824. [Google Scholar] [CrossRef]
- Pardi, F.; Ruziman, H.H.; Suratman, M.N. The Vulnerability of Forest Resources to Climate Change. Land and Environmental Management through Forestry, pp. 103–131. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119910527.ch5 (accessed on 20 July 2024).
- Tijerín-Triviño, J.; Moreno-Fernández, D.; Zavala, M.A.; Astigarraga, J.; García, M. Identifying Forest Structural Types along an Aridity Gradient in Peninsular Spain: Integrating Low-Density LiDAR, Forest Inventory, and Aridity Index. Remote Sens. 2022, 14, 235. [Google Scholar] [CrossRef]
- Hui, G.; Zhang, G.; Zhao, Z.; Yang, A. Methods of Forest Structure Research: A Review. Curr. For. Rep. 2019, 5, 142–154. [Google Scholar] [CrossRef]
- De Cáceres, M.; Martín-Alcón, S.; González-Olabarria, J.R.; Coll, L. A General Method for the Classification of Forest Stands Using Species Composition and Vertical and Horizontal Structure. Ann. For. Sci. 2019, 76, 40. [Google Scholar] [CrossRef]
- Alberdi, I.; Bombín, R.V.; González, J.G.Á.; Ruiz, S.C.; Ferreiro, E.G.; García, S.G.; Mateo, L.H.; Jáuregui, M.M.; Pita, F.M.; de Oliveira Rodríguez, N. The Multi-Objective Spanish National Forest Inventory. For. Syst. 2017, 26, 14. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Sesnie, S.E.; Finegan, B.; Gessler, P.E.; Thessler, S.; Ramos Bendana, Z.; Smith, A.M.S. The Multispectral Separability of Costa Rican Rainforest Types with Support Vector Machines and Random Forest Decision Trees. Int. J. Remote Sens. 2010, 31, 2885–2909. [Google Scholar] [CrossRef]
- Montealegre, A.L.; Lamelas, M.T.; De La Riva, J.; García-Martín, A.; Escribano, F. Use of Low Point Density ALS Data to Estimate Stand-Level Structural Variables in Mediterranean Aleppo Pine Forest. For. Int. J. For. Res. 2016, 89, 373–382. [Google Scholar] [CrossRef]
- Rodríguez-Vivancos, A.; Manzanera, J.A.; Martín-Fernández, S.; García-Cimarras, A.; García-Abril, A. Analysis of Structure from Motion and Airborne Laser Scanning Features for the Evaluation of Forest Structure. Eur. J. For. Res. 2022, 141, 447–465. [Google Scholar] [CrossRef]
- Blanco, E.; Casado, M.A.; Costa, M.; Escribano, R.; García, M.; Génova, M.; Gómez, A.; Gómez, F.; Moreno, J.C.; Morla, C. Los Bosques Ibéricos. Una Interpretación Geobotánica, p. 4. Available online: https://catoute.unileon.es/discovery/fulldisplay?vid=34BUC_ULE:VU1&search_scope=MyInst_and_CI&tab=Everything&docid=alma991003936939705772&context=L (accessed on 20 July 2024).
- Cerrillo, R.M.N.; Fernández, A.L.; Martinez, C.C.; Alvarez, J.G.; Salguero, R.S.; Oyonarte, P.B.; Quintanilla, J.L.; Cancio, A.F. Aproximación a La Definición Del Hábitat Fisiográfico Del Abies Pinsapo Boiss. En Andalucía. For. Syst. 2006, 15, 137–152. [Google Scholar]
- Fernández-Cancio, A.; NavarroCerrillo, R.M.; Fernández, R.F.; Hernández, P.G.; Meneéndez, E.M.; Martínez, C.C. Climate Classification of Abies Pinsapo Boiss. Forests in Southern Spain. For. Syst. 2007, 16, 222–229. [Google Scholar] [CrossRef]
- Granados, J.; Nieva, P.; Pan, J.; Zabalgogeazcoa, M.; Guzmán-Álvarez, J.R.; Jiménez, Y.; Fernández, P. Guía de Los. Paisajes Del. Pinsapar. Un Recorrido a Partir de Las Referencias Históricas Previas al Siglo XXI. Available online: https://www.researchgate.net/publication/301747704_Guia_de_los_paisajes_del_pinsapar_Un_recorrido_a_partir_de_las_referencias_historicas_previas_al_siglo_XXI (accessed on 20 July 2024).
- Pardo-Martínez, R.; Gómez-Zotano, J.; Olmedo-Cobo, J.A. Reconstrucción Paleobiogeográfica de la Distribución de Abies Pinsapo en la Serranía de Ronda A Través del Análisis Pedoantracológico; Delallama Editorial: Asturias, Spain, 2017; Volume 41, p. 286. [Google Scholar]
- Oar, B.A.; Pérez, M.C.; Tavira, S.C.; Palá, J.A.O. Estructura y Dinámica Del Dosel Arbóreo Del Pinsapar de Grazalema. In Los Pinsapares en Andalucia (Abies Pinsapo Boiss.): Conservación Y Sostenibilidad en el Siglo XXI; Servicio de Publicaciones: Madrid, Spain, 2013; pp. 325–335. [Google Scholar]
- Aunós, A.; Martínez, E.; Blanco, R. Tipología Selvícola Para Los Abetales Españoles de Abies Alba Mill. Investig. Agrar. Sist. Y Recur. For. 2007, 16, 52–64. [Google Scholar]
- Bombín, R.V. El Mapa Forestal de España Escala 1: 50.000 (MFE50) Como Base Del Tercer Inventario Forestal Nacional; Cuadernos de la Sociedad Española de Ciencias Forestales: Madrid, Spain, 2005; pp. 205–210. [Google Scholar]
- Guzmán Álvarez, J.R.; de Azcárate, G.; Fernández, F. Aparicio Martínez. J. Guía de Los Paisajes Del Pinsapar; Consejería de Agricultura, Pesca y Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 2012. [Google Scholar]
- Serrada, R. Apuntes de Selvicultura; Servicio de Publicaciones, EUIT Forestal: Madrid, Spain, 2008; pp. 169–196. [Google Scholar]
- McGaughey, R.J. FUSION/LDV: Software for LiDAR Data Analysis and Visualization, Version 3.80; USA Department of Agriculture Forest Service; Pacific Northwest Research Station, University of Washington: Seattle, WA, USA, 2019. [Google Scholar]
- Isenburg, M. LAStools, Efficient Tools for LiDAR Processing. Available online: http://www.lastools.org/ (accessed on 20 July 2024).
- García, A. Métodos Avanzados de Estadística Aplicada. Técnicas Avanzadas; Universidad Nacional de Educación a Distancia. Editorial UNED: Madrid, Spain, 2005; p. 324. [Google Scholar]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable Selection Using Random Forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Graham, M.H. Confronting Multicollinearity in Ecological Multiple Regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support Vector Machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Rivas, M. Evaluation of Different Machine Learning Methods for Land Cover Mapping of a Mediterranean Area Using Multi-Seasonal Landsat Images and Digital Terrain Models. Int. J. Digit. Earth 2014, 7, 492–509. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-Type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Kamavisdar, P.; Saluja, S.; Agrawal, S. A Survey on Image Classification Approaches and Techniques. Int. J. Adv. Res. Comput. Commun. Eng. 2013, 2, 1005–1009. [Google Scholar]
- Li, L.; Jing, W.; Wang, H. Extracting the Forest Type from Remote Sensing Images by Random Forest. IEEE Sens. J. 2020, 21, 17447–17454. [Google Scholar] [CrossRef]
- Adhikari, H.; Valbuena, R.; Pellikka, P.K.; Heiskanen, J. Mapping Forest Structural Heterogeneity of Tropical Montane Forest Remnants from Airborne Laser Scanning and Landsat Time Series. Ecol. Indic. 2020, 108, 105739. [Google Scholar] [CrossRef]
- Olszewski, J.H.; Bailey, J.D. LiDAR as a Tool for Assessing Change in Vertical Fuel Continuity Following Restoration. Forests 2022, 13, 503. [Google Scholar] [CrossRef]
- George-Chacon, S.P.; Dupuy, J.M.; Peduzzi, A.; Hernandez-Stefanoni, J.L. Combining High Resolution Satellite Imagery and Lidar Data to Model Woody Species Diversity of Tropical Dry Forests. Ecol. Indic. 2019, 101, 975–984. [Google Scholar] [CrossRef]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest. Remote Sens. Environ. 2001, 75, 100–112. [Google Scholar] [CrossRef]
- Fomin, V.; Ivanova, N.; Mikhailovich, A. Genetic Forest Typology as a Scientific and Methodological Basis for Environmental Studies and Forest Management. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 609, p. 012044. [Google Scholar]
- García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDAR Height and Intensity Data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Arias-Rodil, M.; Diéguez-Aranda, U.; Álvarez-González, J.G.; Pérez-Cruzado, C.; Castedo-Dorado, F.; González-Ferreiro, E. Modeling Diameter Distributions in Radiata Pine Plantations in Spain with Existing Countrywide LiDAR Data. Ann. For. Sci. 2018, 75, 36. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Duque-Lazo, J.; Rodríguez-Vallejo, C.; Varo-Martínez, M.Á.; Palacios-Rodríguez, G. Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus Halepensis Plantations. Remote Sens. 2018, 10, 1660. [Google Scholar] [CrossRef]
Class | Type | Subtype | Definition |
---|---|---|---|
I | 0 | Isolated trees of A. pinsapo | |
1 | Open forests of A. pinsapo and isolated stands | ||
2 | Recent reforestations | ||
II | 0 | a | Even-aged pure stands of A. pinsapo |
b | Two-aged pure stands of A. pinsapo | ||
c | Uneven-aged pure stands of A. pinsapo | ||
II | 1 | a | Even-aged mixed stands with A. pinsapo |
b | Two-aged mixed stands with A. pinsapo | ||
c | Uneven-aged mixed stands with A. pinsapo | ||
III | 0 | Stands of other species with dominance of A. pinsapo in the stages of stand development * of pre-thicket and thicket. (dbh < 7.5 cm). | |
1 | Stands of other species with dominance of A. pinsapo in the stage of stand development of polewood. (7.5 cm < dbh < 10 cm). |
Statistics | |
---|---|
Arithmetic mean of the values of n cells | Variance: mean of the squared differences of n cells with respect to their arithmetic mean |
Maximum: maximum value of n cells | Coefficient of variation: relationship between the size of the mean and the variability of the variable |
Minimum: minimum value of n cells | Interquartile range: difference between the third and first quartile of a distribution |
Standard deviation: square root of the cell variance | Sum: sum of the values of n cells |
Model | Overall Accuracy | Kappa | Error Rate |
---|---|---|---|
Random Forest | 0.62 | 0.43 | 0.38 |
Support Vector Machines | 0.62 | 0.26 | 0.38 |
Neural Network | 0.61 | 0.29 | 0.39 |
Type | II0a | II0b | II0c | II1a | II1b | II1c | III1 |
---|---|---|---|---|---|---|---|
Sensitivity | 0.25 | 0 | 0.59 | 0.08 | 0 | 0.81 | 0.31 |
Specificity | 0.99 | 1 | 0.79 | 0.99 | 1 | 0.52 | 0.79 |
Detection rate | 0.05 | 0 | 0.20 | 0.05 | 0 | 0.41 | 0.48 |
SN | SG | SB | ||||
---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | |
II0a | 539.11 | 12.85 | - | - | - | - |
II0b | 56.64 | 1.35 | - | - | - | - |
II0c | 758.95 | 18.09 | 265.24 | 42.60 | 38.85 | 25.54 |
II1a | 696.44 | 16.60 | 16.99 | 2.73 | 0.14 | 0.09 |
II1b | 4.19 | 0.01 | 0.17 | 0.03 | - | - |
II1c | 2143.85 | 51.10 | 318.32 | 51.12 | 107.58 | 70.75 |
III1 | - | - | 21.92 | 3.52 | 5.51 | 3.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariza-Salamanca, A.J.; González-Moreno, P.; López-Quintanilla, J.B.; Navarro-Cerrillo, R.M. Large-Scale Mapping of Complex Forest Typologies Using Multispectral Imagery and Low-Density Airborne LiDAR: A Case Study in Pinsapo Fir Forests. Remote Sens. 2024, 16, 3182. https://doi.org/10.3390/rs16173182
Ariza-Salamanca AJ, González-Moreno P, López-Quintanilla JB, Navarro-Cerrillo RM. Large-Scale Mapping of Complex Forest Typologies Using Multispectral Imagery and Low-Density Airborne LiDAR: A Case Study in Pinsapo Fir Forests. Remote Sensing. 2024; 16(17):3182. https://doi.org/10.3390/rs16173182
Chicago/Turabian StyleAriza-Salamanca, Antonio Jesús, Pablo González-Moreno, José Benedicto López-Quintanilla, and Rafael María Navarro-Cerrillo. 2024. "Large-Scale Mapping of Complex Forest Typologies Using Multispectral Imagery and Low-Density Airborne LiDAR: A Case Study in Pinsapo Fir Forests" Remote Sensing 16, no. 17: 3182. https://doi.org/10.3390/rs16173182
APA StyleAriza-Salamanca, A. J., González-Moreno, P., López-Quintanilla, J. B., & Navarro-Cerrillo, R. M. (2024). Large-Scale Mapping of Complex Forest Typologies Using Multispectral Imagery and Low-Density Airborne LiDAR: A Case Study in Pinsapo Fir Forests. Remote Sensing, 16(17), 3182. https://doi.org/10.3390/rs16173182