The Response of Stratospheric Gravity Waves to the 11-Year Solar Cycle
Abstract
:1. Introduction
2. Data Selection and Methods
2.1. Atmospheric Temperature Profile and the Sunspot Number
2.2. The Method of Gravity Wave Extraction
2.3. Statistical Method
3. Result
3.1. Response of Short Wavelength (2–10 km) Gravity Waves
3.2. Response of Long-Wavelength (12–20 km) Gravity Waves
3.3. Response of Full Wavelength (2–20 km) Gravity Waves
4. Summary and Discussion
- In terms of gravity wave intensity, the disturbance intensity of gravity waves is strongest in the equatorial region, followed by the mid-latitude region, and weakest in the high-latitude region; there are significant interannual variations in gravity wave disturbances in high-latitude and mid-latitude regions, while the interannual variations in the equatorial region are not significant;
- Compared to long-wave gravity waves, short-wave gravity waves exhibit a more pronounced response to solar activity, and the correlation increases with increasing lag time, which may be due to the characteristics of short-wave gravity waves or the predominance of short waves in the gravity waves detected by GNOSE;
- For high-latitude regions, gravity wave disturbances are more sensitive to changes in solar activity than in other regions, and the response is more rapid; the response of gravity wave disturbance intensity in the high-latitude region of the Southern Hemisphere to changes in solar activity in the current year is higher than that in the high-latitude region of the Northern Hemisphere; the correlation between gravity wave intensity and changes in solar activity in high-latitude regions also varies with altitude, with higher altitudes exhibiting a stronger correlation;
- For mid-latitude and equatorial regions, there is a delay in response to changes in solar activity, with the correlation gradually increasing with the lagging years, reaching a very strong level after a lag of 2 years; the correlation between gravity wave disturbance intensity and solar activity is generally higher in the mid-latitude region of the Southern Hemisphere than in the Northern Hemisphere, which may be due to the stronger influence of terrain and convection on gravity waves in the Northern Hemisphere; the response of short-wave gravity wave intensity to changes in solar activity at lag times of 1 and 2 years is higher than that of long-wave gravity waves in mid-latitude and equatorial regions; the correlation between full-wavelength (2–20 km) gravity wave intensity and solar activity with a lag of 2 years is negatively correlated with altitude, with higher altitudes exhibiting weaker correlation, while the correlation with a lag of 1 year is the opposite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, S.J.; Vincent, R.A. Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res. Atmos. 1995, 100, 1327–1350. [Google Scholar] [CrossRef]
- Daren, L.; Chen, Z.; Guo, X.; Tian, W. Recent progress in near space atmospheric environment study. Adv. Mech. 2009, 39, 674–682. [Google Scholar]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Cheng, X.; Guo, W.; Li, J.; Yang, G.; Zhang, X.; Yang, Z.; Hu, X.; Gu, S.; et al. Investigation of the Global Gravity Wave Activity Characteristics from the FY-3C Satellite Observation Data. Chin. J. Space Sci. 2023, 43, 260. [Google Scholar] [CrossRef]
- Singer, W.; Hoffmann, P.; Kishore Kumar, G.; Mitchell, N.J.; Matthias, V. Atmospheric coupling by gravity waves: Climatology of gravity wave activity, mesospheric turbulence and their relations to solar activity. In Climate and Weather of the Sun-Earth System (CAWSES); Springer: Dordrecht, The Netherlands, 2013; pp. 409–427. [Google Scholar]
- Nastrom, G.D.; Fritts, D.C. Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci. 1992, 49, 101–110. [Google Scholar] [CrossRef]
- Vincent, R.A.; Joan, A.M. Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. J. Geophys. Res. Atmos. 2000, 105, 17971–17982. [Google Scholar] [CrossRef]
- Fritts, D.C.; Nastrom, G.D. Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci. 1992, 49, 111–127. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Manson, A.H.; Meek, C.E. Climatological monthly characteristics of middle atmosphere gravity waves (10 min–10 h) during 1979–1993 at Saskatoon. Ann. Geophys. 1995, 13, 285. [Google Scholar]
- Gavrilov, N.M.; Fukao, S.; Nakamura, T.; Jacobi, C.; Kürschner, D.; Manson, A.H.; Meek, C.E. Comparative study of interannual changes of the mean winds and gravity wave activity in the middle atmosphere over Japan, Central Europe and Canada. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1003–1010. [Google Scholar] [CrossRef]
- Jacobi, C.; Gavrilov, N.M.; Kürschner, D.; Fröhlich, K. Gravity wave climatology and trends in the mesosphere/lower thermosphere region deduced from low-frequency drift measurements 1984–2003 (52.1 N, 13.2 E). J. Atmos. Sol.-Terr. Phys. 2006, 68, 1913–1923. [Google Scholar] [CrossRef]
- Li, T.; Leblanc, T.; McDermid, I.S.; Wu, D.L.; Dou, X.; Wang, S. Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. J. Geophys. Res. Atmos. 2010, 115, D13103. [Google Scholar] [CrossRef]
- Liu, X.; Yue, J.; Xu, J.; Garcia, R.R.; Russell, J.M.; Mlynczak, M.; Wu, D.L.; Nakamura, T. Variations of global gravity waves derived from 14 years of SABER temperature observations. J. Geophys. Res. Atmos. 2017, 122, 6231–6249. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Riggin, D.M.; Fritts, D.C. Interannual variations of the mean wind and gravity wave variances in the middle atmosphere over Hawaii. J. Atmos. Sol.-Terr. Phys. 2004, 66, 637–645. [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Gille, J.C.; Hepplewhite, C.L.; Mlynczak, M.G.; Russell, J.M., III; Riese, M. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res. Atmos. 2011, 116, D19107. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, J.; Liu, L.; Wan, W. A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. J. Geophys. Res. Atmos. 2012, 117, D21101. [Google Scholar] [CrossRef]
- Vadas, S.L.; Fritts, D.C. Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. J. Geophys. Res. Space Phys. 2006, 111, A10S12. [Google Scholar] [CrossRef]
- Yiğit, E.; Medvedev, A.S. Internal gravity waves in the thermosphere during low and high solar activity: Simulation study. J. Geophys. Res. Space Phys. 2010, 115, A00G02. [Google Scholar] [CrossRef]
- Mandal, S.; Pallamraju, D.; Suryawanshi, P. Changes in the daytime thermospheric gravity wave propagation characteristics over low-latitudes in response to the variation in solar flux. J. Atmos. Sol.-Terr. Phys. 2020, 209, 105414. [Google Scholar] [CrossRef]
- Haigh, J.D. The impact of solar variability on climate. Science 1996, 272, 981–984. [Google Scholar] [CrossRef]
- Tinsley, B.A. Correlations of atmospheric dynamics with solar wind-induced changes of air-Earth current density into cloud tops. J. Geophys. Res. Atmos. 1996, 101, 29701–29714. [Google Scholar] [CrossRef]
- Zhao, X.H.; Feng, X.S. Periodicities of solar activity and the surface temperature variation of the Earth and their correlations. Chin. Sci. Bull. 2014, 59, 1284–1292. [Google Scholar]
- Huth, R.; Bochníček, J.; Hejda, P. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1095–1109. [Google Scholar] [CrossRef]
- Xiao, Z.; Yin, Z.; Liu, S.; Song, Y. Impacting of Solar Activity and Earth Movement Factors on Climate, 1st ed.; China Science Publishing & Media Ltd.: Beijing, China, 2023. [Google Scholar]
- Alexander, S.P.; Tsuda, T.; Kawatani, Y. COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophys. Res. Lett. 2008, 35, L10808. [Google Scholar] [CrossRef]
- John, S.R.; Kumar, K.K. A discussion on the methods of extracting gravity wave perturbations from space-based measurements. Geophys. Res. Lett. 2013, 40, 2406–2410. [Google Scholar] [CrossRef]
- Sun, Y.; Bai, W.; Liu, C.; Liu, Y.; Du, Q.; Wang, X.; Yang, G.; Liao, M.; Yang, Z.; Zhang, X.; et al. The FengYun-3C radio occultation sounder GNOS: A review of the mission and its early results and science applications. Atmos. Meas. Tech. 2018, 11, 5797–5811. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, P.; Yang, G.-L.; Bi, Y.-M.; Liu, Y.; Bai, W.; Meng, X.; Du, Q.-F.; Sun, Y.-Q. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C. Atmos. Meas. Tech. 2016, 9, 781–792. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Sun, Y.Q.; Bai, W.H.; Xia, J.M.; Tan, G.Y.; Cheng, C.; Du, Q.F.; Wang, X.Y.; Zhao, D.Y.; Tian, Y.S.; et al. Validation of Preliminary Results of Thermal Tropopause Derived from FY-3C GNOS Data. Remote. Sens. 2019, 11, 1139. [Google Scholar] [CrossRef]
- Balogh, A.; Hudson, H.S.; Petrovay, K.; von Steiger, R. Introduction to the Solar Activity Cycle: Overview of Causes and Consequences. Space Sci. Rev. 2014, 186, 1–15. [Google Scholar] [CrossRef]
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. Ocean. 1981, 86, 9707–9714. [Google Scholar] [CrossRef]
- Alexander, M.J.; Gille, J.; Cavanaugh, C.; Coffey, M.; Craig, C.; Eden, T.; Francis, G.; Halvorson, C.; Hannigan, J.; Khosravi, R.; et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res. Atmos. 2008, 113, D15S18. [Google Scholar] [CrossRef]
- Wu, D.L.; Eckermann, S.D. Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation. J. Atmos. Sci. 2008, 65, 3695–3718. [Google Scholar] [CrossRef]
- Xiao, Z.; Liao, Y.; Li, C. Possible impact of solar activity on the convection dipole over the tropical pacific ocean. J. Atmos. Sol.-Terr. Phys. 2016, 140, 94–107. [Google Scholar] [CrossRef]
- White, W.B.; Lean, J.; Cayan, D.R.; Dettinger, M.D. Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res. Oceans 1997, 102, 3255–3266. [Google Scholar] [CrossRef]
- Krivolutsky, A.A.; Cherepanova, L.A.; Dement’eva, A.V. Solar cycle influence on troposphere and middle atmosphere via ozone layer in the presence of planetary waves: Simulation with ARM. J. Geophys. Res. Space Phys. 2015, 120, 8298–8306. [Google Scholar] [CrossRef]
- Shi, G.; Hu, X.; Yao, Z.; Guo, W.; Sun, M.; Gong, X. Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection. Earth Planet. Phys. 2021, 5, 79–89. [Google Scholar] [CrossRef]
- Huo, W.; Xiao, Z.; Zhao, L. Phase-locked impact of the 11-year solar cycle on tropical pacific decadal variability. J. Clim. 2023, 36, 421–439. [Google Scholar] [CrossRef]
Lag (Years) | Altitude | Northern High Latitude | Northern Mid Latitude | Equator | Southern Mid Latitude | Southern High Latitude |
---|---|---|---|---|---|---|
Lag 0 year | 25 km | 0.038 | −0.233 | −0.337 * | −0.259 | 0.121 |
35 km | 0.509 *** | −0.114 | −0.319 * | −0.033 | 0.789 *** | |
45 km | 0.521 *** | 0.095 | −0.274 | 0.307 * | 0.774 *** | |
Lag 1 year | 25 km | 0.413 *** | 0.554 *** | 0.381 *** | 0.554 *** | 0.728 *** |
35 km | −0.082 | 0.619 *** | 0.439 *** | 0.695 *** | 0.439 ** | |
45 km | −0.246 | 0.677 *** | 0.5 *** | 0.776 *** | 0.096 * | |
Lag 2 year | 25 km | 0.674 *** | 0.939 *** | 0.85 *** | 0.937 *** | 0.909 *** |
35 km | −0.316 * | 0.944 *** | 0.88 *** | 0.949 *** | 0.069 | |
45 km | −0.592 *** | 0.87 *** | 0.877 *** | 0.804 *** | −0.383 ** |
Lag (Years) | Altitude | Northern High Latitude | Northern Mid Latitude | Equator | Southern Mid Latitude | Southern High Latitude |
---|---|---|---|---|---|---|
Lag 0 year | 25 km | 0.313 * | −0.034 | −0.394 ** | −0.302 * | 0.743 *** |
35 km | 0.348 ** | −0.145 | −0.444 *** | 0.083 | 0.813 *** | |
45 km | 0.457 *** | −0.148 | −0.388 *** | −0.05 | 0.889 *** | |
Lag 1 year | 25km | −0.48 *** | 0.321 * | 0.131 | 0.724 *** | 0.041 |
35 km | −0.433 ** | 0.378 ** | 0.12 | 0.731 *** | 0.18 | |
45 km | −0.313 * | 0.425 ** | 0.231 | 0.693 *** | 0.394 ** | |
Lag 2 year | 25 km | 0.728 *** | 0.639 *** | 0.627 *** | 0.788 ** | −0.378 ** |
35 km | 0.692 *** | 0.742 *** | 0.629 ** | 0.902 *** | −0.266 | |
45 km | −0.618 *** | 0.77 *** | 0.71 *** | 0.93 *** | −0.06 ** |
Lag (Years) | Altitude | Northern High Latitude | Northern Mid Latitude | Equator | Southern Mid Latitude | Southern High Latitude |
---|---|---|---|---|---|---|
Lag 0 year | 25 km | 0.266 * | −0.227 | −0.375 ** | −0.07 | 0.634 *** |
35 km | 0.461 *** | −0.147 | −0.38 ** | 0.030 | 0.83 *** | |
45 km | 0.504 *** | −0.053 | −0.345 | 0.085 | 0.826 *** | |
Lag 1 year | 25km | −0.225 | 0.443 *** | 0.309 ** | 0.683 *** | 0.449 *** |
35 km | −0.27 | 0.492 *** | 0.321 ** | 0.704 *** | 0.272 | |
45 km | −0.265 | 0.519 *** | 0.357 ** | 0.708 *** | 0.197 | |
Lag 2 year | 25 km | −0.3 * | 0.858 *** | 0.796 *** | 0.952 *** | 0.246 |
35 km | 0.548 *** | 0.849 *** | 0.795 *** | 0.903 *** | −0.178 | |
45 km | −0.592 *** | 0.795 *** | 0.793 *** | 0.863 *** | −0.288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Mi, Q.; He, F.; Guo, W.; Zhang, X.; Yang, J. The Response of Stratospheric Gravity Waves to the 11-Year Solar Cycle. Remote Sens. 2024, 16, 3239. https://doi.org/10.3390/rs16173239
Wang C, Mi Q, He F, Guo W, Zhang X, Yang J. The Response of Stratospheric Gravity Waves to the 11-Year Solar Cycle. Remote Sensing. 2024; 16(17):3239. https://doi.org/10.3390/rs16173239
Chicago/Turabian StyleWang, Cong, Qianchuan Mi, Fei He, Wenjie Guo, Xiaoxin Zhang, and Junfeng Yang. 2024. "The Response of Stratospheric Gravity Waves to the 11-Year Solar Cycle" Remote Sensing 16, no. 17: 3239. https://doi.org/10.3390/rs16173239
APA StyleWang, C., Mi, Q., He, F., Guo, W., Zhang, X., & Yang, J. (2024). The Response of Stratospheric Gravity Waves to the 11-Year Solar Cycle. Remote Sensing, 16(17), 3239. https://doi.org/10.3390/rs16173239