Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. LAI Measurement
2.2.2. Acquisition and Processing of UAV Multispectral Image
2.3. Methods
2.3.1. Construction of Vegetation Indices, Texture Features, and Texture Indices
2.3.2. Feature Importance Ranking
2.3.3. Modeling Methods
2.3.4. Model Evaluation Indices
3. Results
3.1. Apple Orchard LAI and Multispectral Feature Analysis
3.2. Correlation Analysis between LAI and Both Spectral and Texture Information
3.3. LAI Estimation Based on VIs
3.4. LAI Estimation Based on VIs Combined with Texture Information
3.5. LAI Inversion Mapping
4. Discussion
4.1. Feasibility of Estimating LAI with Multispectral UAV Images in Apple Orchard
4.2. Advantages of Combining Spectral and Texture Information for Estimating LAI
4.3. Advantages of CatBoost in Estimation LAI
4.4. Advances and Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chen, M.; Shao, M.a.; Wei, X.; Li, T.; Shen, N.; Mi, M.; Zhao, C.; Yang, X.; Gan, M.; Bai, X. Response of the vertical distribution of soil water and nitrogen in the 5 m soil layer to the conversion of cropland to apple orchards in the Loess Plateau, China. Agric. Ecosyst. Environ. 2022, 333, 107960. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, X.; He, N.; Zhao, X. Ecohydrological advantage of young apple tree-based agroforestry and its response to extreme droughts on the semiarid Loess Plateau. Agric. For. Meteorol. 2022, 321, 108969. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, G.; Yang, H.; Zhao, F.; Han, S.; Chen, R.; Zhang, C.; Yang, X.; Liu, M.; Cheng, J.; et al. Estimation of Apple Flowering Frost Loss for Fruit Yield Based on Gridded Meteorological and Remote Sensing Data in Luochuan, Shaanxi Province, China. Remote Sens. 2021, 13, 1630. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 2006, 15, 421–429. [Google Scholar] [CrossRef]
- Nemani, R.; Pierce, L.; Running, S.; Band, L. Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed Leaf Area Index estimates. Int. J. Remote Sens. 2007, 14, 2519–2534. [Google Scholar] [CrossRef]
- Liu, C.; Kang, S.; Li, F.; Li, S.; Du, T. Canopy leaf area index for apple tree using hemispherical photography in arid region. Sci. Hortic. 2013, 164, 610–615. [Google Scholar] [CrossRef]
- Macfarlane, C.; Grigg, A.; Evangelista, C. Estimating forest leaf area using cover and fullframe fisheye photography: Thinking inside the circle. Agric. For. Meteorol. 2007, 146, 1–12. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; de Bruin, S. Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS J. Photogramm. Remote Sens. 2015, 108, 234–244. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S.; Johansen, K. Assessment of multi-resolution image data for mangrove leaf area index mapping. Remote Sens. Environ. 2016, 176, 242–254. [Google Scholar] [CrossRef]
- Qiao, L.; Zhao, R.; Tang, W.; An, L.; Sun, H.; Li, M.; Wang, N.; Liu, Y.; Liu, G. Estimating maize LAI by exploring deep features of vegetation index map from UAV multispectral images. Field Crop. Res. 2022, 289, 108739. [Google Scholar] [CrossRef]
- Zhang, Y.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.; Li, F.; Chang, Q. Combining Spectral and Textural Information from UAV RGB Images for Leaf Area Index Monitoring in Kiwifruit Orchard. Remote Sens. 2022, 14, 1063. [Google Scholar] [CrossRef]
- Lee, L.X.; Whitby, T.G.; Munger, J.W.; Stonebrook, S.J.; Friedl, M.A. Remote sensing of seasonal variation of LAI and fAPAR in a deciduous broadleaf forest. Agric. For. Meteorol. 2023, 333, 109389. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Q.; Chang, Q.; Shang, J.; Du, X.; Liu, J.; Dong, T. In-season crop type identification using optimal feature knowledge graph. ISPRS J. Photogramm. Remote Sens. 2022, 194, 250–266. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M. Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors 2010, 10, 9647–9667. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Pandey, A.C. Spectral aspects for monitoring forest health in extreme season using multispectral imagery. Egypt. J. Remote Sens. Space Sci. 2021, 24, 579–586. [Google Scholar] [CrossRef]
- Imran, H.A.; Gianelle, D.; Rocchini, D.; Dalponte, M.; Martín, M.P.; Sakowska, K.; Wohlfahrt, G.; Vescovo, L. VIS-NIR, Red-Edge and NIR-Shoulder Based Normalized Vegetation Indices Response to Co-Varying Leaf and Canopy Structural Traits in Heterogeneous Grasslands. Remote Sens. 2020, 12, 2254. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, W.; Wu, L.; Lei, G.; Chen, H.; Gaiser, T.; Srivastava, A.K. Simulating the Leaf Area Index of Rice from Multispectral Images. Remote Sens. 2021, 13, 3663. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Zhao, D.; Zhen, J.; Zhang, Y.; Miao, J.; Shen, Z.; Jiang, X.; Wang, J.; Jiang, J.; Tang, Y.; Wu, G. Mapping mangrove leaf area index (LAI) by combining remote sensing images with PROSAIL-D and XGBoost methods. Remote Sens. Ecol. Conserv. 2023, 9, 370–389. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, D.; Huang, J.; Chen, D. Evaluation of MODIS surface reflectance products for wheat leaf area index (LAI) retrieval. ISPRS J. Photogramm. Remote Sens. 2008, 63, 661–677. [Google Scholar] [CrossRef]
- Shen, B.; Ding, L.; Ma, L.; Li, Z.; Pulatov, A.; Kulenbekov, Z.; Chen, J.; Mambetova, S.; Hou, L.; Xu, D.; et al. Modeling the Leaf Area Index of Inner Mongolia Grassland Based on Machine Learning Regression Algorithms Incorporating Empirical Knowledge. Remote Sens. 2022, 14, 4196. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Li, Q.; Wen, Z.; He, B. Practical Federated Gradient Boosting Decision Trees. AAAI Conf. Artif. Intell. 2020, 34, 4642–4649. [Google Scholar] [CrossRef]
- Li, Z.-w.; Xin, X.-p.; Tang, H.; Yang, F.; Chen, B.-r.; Zhang, B.-h. Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. J. Integr. Agric. 2017, 16, 286–297. [Google Scholar] [CrossRef]
- Qiao, D.; Yang, J.; Bai, B.; Li, G.; Wang, J.; Li, Z.; Liu, J.; Liu, J. Non-Destructive Monitoring of Peanut Leaf Area Index by Combing UAV Spectral and Textural Characteristics. Remote Sens. 2024, 16, 2182. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Jiang, D.; Zhang, Z.; Chang, Q. Quantitative Assessment of Apple Mosaic Disease Severity Based on Hyperspectral Images and Chlorophyll Content. Remote Sens. 2023, 15, 2202. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, Q.; Chen, Y.; Liu, Y.; Jiang, D.; Zhang, Z. Hyperspectral Estimation of Chlorophyll Content in Apple Tree Leaf Based on Feature Band Selection and the CatBoost Model. Agronomy 2023, 13, 2075. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, P.; Liu, H.; Fan, P.; Zeng, P.; Liu, X.; Feng, C.; Wang, W.; Yang, F. Gradient Boosting Estimation of the Leaf Area Index of Apple Orchards in UAV Remote Sensing. Remote Sens. 2021, 13, 3263. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Yang, G.; Xu, B.; Feng, H.; Chen, R.; Qi, N.; Zhang, W.; Zhao, D.; Cheng, J.; et al. Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model. Comput. Electron. Agric. 2024, 221, 108959. [Google Scholar] [CrossRef]
- Du, X.; Zheng, L.; Zhu, J.; He, Y. Enhanced Leaf Area Index Estimation in Rice by Integrating UAV-Based Multi-Source Data. Remote Sens. 2024, 16, 1138. [Google Scholar] [CrossRef]
- Wang, X.; Yan, S.; Wang, W.; Yin, L.; Li, M.; Yu, Z.; Chang, S.; Hou, F. Monitoring leaf area index of the sown mixture pasture through UAV multispectral image and texture characteristics. Comput. Electron. Agric. 2023, 214, 108333. [Google Scholar] [CrossRef]
- Chen, S.; Useya, J.; Mugiyo, H. Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination and classification: Case of Masvingo, Zimbabwe. Heliyon. 2020, 6, e05358. [Google Scholar] [CrossRef]
- Nogueira Martins, R.; de Assis de Carvalho Pinto, F.; Marçal de Queiroz, D.; Sárvio Magalhães Valente, D.; Tadeu Fim Rosas, J.; Fagundes Portes, M.; Sânzio Aguiar Cerqueira, E. Digital mapping of coffee ripeness using UAV-based multispectral imagery. Comput. Electron. Agric. 2023, 204, 107499. [Google Scholar] [CrossRef]
- Du, R.; Lu, J.; Xiang, Y.; Zhang, F.; Chen, J.; Tang, Z.; Shi, H.; Wang, X.; Li, W. Estimation of winter canola growth parameter from UAV multi-angular spectral-texture information using stacking-based ensemble learning model. Comput. Electron. Agric. 2024, 222, 109074. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Zhang, Y.; Yin, Q.; Wang, W.; Zhou, G.; Huo, Z. Combining Texture, Color, and Vegetation Index from Unmanned Aerial Vehicle Multispectral Images to Estimate Winter Wheat Leaf Area Index during the Vegetative Growth Stage. Remote Sens. 2023, 15, 5715. [Google Scholar] [CrossRef]
- Qi, K.-T.; Zhang, H.-S.; Zheng, Y.-G.; Zhang, Y.; Ding, L.-Y. Stripe segmentation of oceanic internal waves in SAR images based on Gabor transform and K-means clustering. Oceanologia 2023, 65, 548–555. [Google Scholar] [CrossRef]
- Grigorescu, S.E.; Petkov, N.; Kruizinga, P. Comparison of texture features based on Gabor filters. IEEE Trans. Image Process. 2002, 11, 1160–1167. [Google Scholar] [CrossRef]
- Zhang, D.; Wong, A.; Indrawan, M.; Lu, G. Content-based image retrieval using Gabor texture features. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 3656, 13–15. [Google Scholar]
- Daugman, J.G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1169–1179. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Bai, Y.; Wu, W.; Cui, N.; Cheng, M.; Liu, Y.; Meng, L.; Jia, X.; Nie, C.; et al. UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103383. [Google Scholar] [CrossRef]
- Yuan, W.; Meng, Y.; Li, Y.; Ji, Z.; Kong, Q.; Gao, R.; Su, Z. Research on rice leaf area index estimation based on fusion of texture and spectral information. Comput. Electron. Agric. 2023, 211, 108016. [Google Scholar] [CrossRef]
- Zhang, B.; Gu, L.; Dai, M.; Bao, X.; Sun, Q.; Zhang, M.; Qu, X.; Li, Z.; Zhen, W.; Gu, X. Estimation of grain filling rate of winter wheat using leaf chlorophyll and LAI extracted from UAV images. Field Crops Res. 2024, 306, 109198. [Google Scholar] [CrossRef]
- Ta, N.; Chang, Q.; Zhang, Y. Estimation of Apple Tree Leaf Chlorophyll Content Based on Machine Learning Methods. Remote Sens. 2021, 13, 3902. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.; Hu, S.; Li, M.; Feng, W.; Zheng, J.; Lv, J. Positioning of Apple’s Growth Cycle Based on Pattern Recognition. Mob. Inf. Syst. 2021, 9687950. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Zhou, X.; Dandan, L.; Huiming, Y.; Honggen, C.; Leping, S.; Guojing, Y.; Qingbiao, H.; Brown, L.; Malone, J.B. Use of landsat TM satellite surveillance data to measure the impact of the 1998 flood on snail intermediate host dispersal in the lower Yangtze River Basin. Acta Trop. 2002, 82, 199–205. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 2000, 74, 609–620. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Schneider, P.; Roberts, D.A.; Kyriakidis, P.C. A VARI-based relative greenness from MODIS data for computing the Fire Potential Index. Remote Sens. Environ. 2008, 112, 1151–1167. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Turner, M.R. Texture discrimination by Gabor functions. Biol. Cybern. 1986, 55, 71–82. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, P.; Zhuang, S.; Li, M.; Li, Z.; Gong, Z. Detection of maize drought based on texture and morphological features. Comput. Electron. Agric. 2018, 151, 50–60. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Fan, J.; Zhang, F.; Wang, X.; Zeng, W. Potential of kernel-based nonlinear extension of Arps decline model and gradient boosting with categorical features support for predicting daily global solar radiation in humid regions. Energy Convers. Manag. 2019, 183, 280–295. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- Cui, Y.; Meng, F.; Fu, P.; Yang, X.; Zhang, Y.; Liu, P. Application of hyperspectral analysis of chlorophyll a concentration inversion in Nansi Lake. Ecol. Inform. 2021, 64, 101360. [Google Scholar] [CrossRef]
- Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Z.; Su, P.; Wei, K.; Wang, Z.; Yang, C.; Wang, C.; Qin, M.; Xiao, L.; Yang, W.; et al. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features. Front. Plant Sci. 2023, 14, 1158837. [Google Scholar] [CrossRef]
- Zou, M.; Liu, Y.; Fu, M.; Li, C.; Zhou, Z.; Meng, H.; Xing, E.; Ren, Y. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage. Front. Plant Sci. 2024, 14, 1272049. [Google Scholar] [CrossRef]
- Hang, Y.; Su, H.; Yu, Z.; Liu, H.; Guan, H.; Kong, F. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage. Trans. Chin. Soc. Agric. Eng. 2021, 37, 64–71. [Google Scholar]
- Zhang, J.; Qiu, X.; Wu, Y.; Zhu, Y.; Cao, Q.; Liu, X.; Cao, W. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Comput. Electron. Agric. 2021, 185, 106138. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; Xiao, Y.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.; Chen, R.; Ma, Y. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agric. 2023, 24, 187–212. [Google Scholar] [CrossRef] [PubMed]
- Uribeetxebarria, A.; Castellón, A.; Aizpurua, A. Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm. Remote Sens. 2023, 15, 1640. [Google Scholar] [CrossRef]
- Zhai, W.; Li, C.; Fei, S.; Liu, Y.; Ding, F.; Cheng, Q.; Chen, Z. CatBoost algorithm for estimating maize above-ground biomass using unmanned aerial vehicle-based multi-source sensor data and SPAD values. Comput. Electron. Agric. 2023, 214, 108306. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.M.; Yu, W.; Zheng, H.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. A chlorophyll-constrained semi-empirical model for estimating leaf area index using a red-edge vegetation index. Comput. Electron. Agric. 2024, 220, 108891. [Google Scholar] [CrossRef]
- Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Res. 2017, 210, 33–46. [Google Scholar] [CrossRef]
UAV Parameter | Value | |
---|---|---|
Central wavelength | Blue (B) | 450 nm |
Green (G) | 560 nm | |
Red (R) | 650 nm | |
Red-edge (RE) | 730 nm | |
Near-infrared (NIR) | 840 nm | |
Maximum flight speeds | Ascending | 6 m/s |
Descending | 3 m/s | |
Horizontal flight | 50 km/h | |
Weight Ground Sampling Distance | Total weight (flight altitude/18.9) cm/pixel | 1.487 kg 1.59 cm/pixel |
VIs | Formula | Reference |
---|---|---|
NDVI | (NIR − R)/(NIR + R) | [46] |
RVI | NIR/R | [47] |
Difference Vegetation Index (DVI) | NIR − R | [48] |
Transformed Normalized Difference Vegetation Index (TNDVI) | [49] | |
Renormalized Difference Vegetation Index (RDVI) | (NIR − R)/ | [50] |
Normalized Green–Red Difference Index (NGRDI) | (G − R)/(G + R) | [51] |
Normalized Green Index (NGI) | G/(NIR + R + G) | [52] |
Normalized Difference Red Edge Index (NDRE) | (NIR − RE)/(NIR + RE) | [53] |
Enhanced Vegetation Index (EVI) | 2.5[(NIR − R)/(NIR + 6R − 7.5B + 1)] | [54] |
Optimized Soil Adjusted Vegetation Index (OSAVI) | (NIR − R)/(NIR − R + 0.16) | [55] |
MERIS terrestrial chlorophyll index (MTCI) | (NIR − RE)/(RE − R) | [56] |
Chlorophyll Index Red Edge (CIRE) | NIR/RE − 1 | [57] |
2-Band Enhanced Vegetation Index (EVI2) | 2.5(NIR − R)/(1 + NIR + 2.4R) | [58] |
Green Normalized Difference Vegetation Index (GNDVI) | (NIR − G)/(NIR + G) | [59] |
Triangle Vegetation Index (TVI) | 60(NIR − G) − 100(R − G) | [60] |
Visible Atmospherically Resistant Index (VARI) | (G − R)/(G + R − B) | [61] |
Soil Adjusted Vegetation Index (SAVI) | 1.5(NIR − R)/(NIR + R + 0.5) | [62] |
Modified Triangle Vegetation Index (MTVI) | 1.2[1.2(NIR − G) − 2.5(R − G)] | [63] |
Structure Insensitive Pigment Index (SIPI) | (NIR − B)/(NIR − R) | [64] |
TIs | Formula |
---|---|
Normalized Difference Texture Index (NDTI) | (T1 − T2)/(T1 + T2) |
Ratio Texture Index (RTI) | T1/T2 |
Difference Texture Index (DTI) | T1 − T2 |
Growth Stage | Sample Size | Min | Max | Mean | Standard Deviation (SD) | Coefficient of Variation (CV, %) |
---|---|---|---|---|---|---|
FF | 108 | 0.19 | 2.21 | 1.19 | 0.52 | 43.54 |
FS | 108 | 0.34 | 2.82 | 1.47 | 0.66 | 45.21 |
FE | 108 | 0.28 | 3.50 | 1.89 | 0.75 | 39.83 |
VIs | Correlation Coefficients | ||
---|---|---|---|
FF | FS | FE | |
B | −0.14 | −0.08 | 0.07 |
G | 0.51 ** | 0.03 | 0.26 ** |
R | −0.10 | −0.61 ** | −0.33 * |
RE | 0.73 ** | 0.44 ** | 0.67 ** |
NIR | 0.78 ** | 0.57 ** | 0.75 ** |
NDVI | 0.55 ** | 0.75 ** | 0.72 ** |
RVI | 0.50 ** | 0.80 ** | 0.74 ** |
DVI | 0.79 ** | 0.66 ** | 0.79 ** |
TNDVI | 0.55 ** | 0.75 ** | 0.72 ** |
RDVI | 0.81 ** | 0.73 ** | 0.81 ** |
NRI | 0.55 ** | 0.82 ** | 0.72 ** |
NGI | −0.51 ** | −0.60 ** | −0.63 ** |
NDREI | 0.33 ** | 0.59 ** | 0.54 ** |
EVI | 0.81 ** | 0.72 ** | 0.81 ** |
OSAVI | 0.79 ** | 0.66 ** | 0.77 ** |
MTCI | 0.30 ** | 0.28 ** | 0.34 ** |
CIRE | 0.32 ** | 0.59 ** | 0.54 ** |
EVI2 | 0.80 ** | 0.71 ** | 0.81 ** |
GNDVI | 0.50 ** | 0.61 ** | 0.63 ** |
TVI | 0.80 ** | 0.68 ** | 0.80 ** |
VARI | 0.56 ** | 0.82 ** | 0.72 ** |
SAVI | 0.81 ** | 0.75 ** | 0.81 ** |
MTVI | 0.80 ** | 0.69 ** | 0.80 ** |
SIPI | 0.45 ** | 0.65 ** | 0.42 ** |
Texture Feature | Correlation Coefficient | ||
---|---|---|---|
FF | FS | FE | |
MEAN −B | 0.14 | −0.08 | 0.07 |
VAR −B | −0.06 | 0.47 ** | 0.35 ** |
SEC −B | 0.06 | −0.09 | 0.08 |
CORR −B | −0.03 | 0.49 ** | 0.36 ** |
MEAN −G | 0.51 ** | 0.03 | 0.28 ** |
VAR −G | 0.01 | 0.56 ** | 0.56 ** |
SEC −G | 0.46 ** | 0.06 | 0.29 ** |
CORR −G | 0.09 | 0.59 ** | 0.58 ** |
MEAN −R | 0.10 | −0.61 ** | −0.32 ** |
VAR−R | −0.12 | −0.22 * | −0.18 |
SEC−R | −0.01 | −0.63 ** | −0.36 ** |
CORR−R | −0.12 | −0.16 | −0.12 |
MEAN−RE | 0.73 ** | 0.44 ** | 0.69 ** |
VAR−RE | −0.03 | 0.40 ** | 0.22 * |
SEC−RE | 0.69 ** | 0.45 ** | 0.69 ** |
CORR−RE | 0.04 | 0.40** | 0.22 * |
MEAN−NIR | 0.78 ** | 0.57 ** | 0.77 ** |
VAR−NIR | 0.00 | −0.14 | −0.18 |
SEC−NIR | 0.74 ** | 0.56 ** | 0.77 ** |
CORR−NIR | 0.06 | −0.08 | −0.19 |
Growth Stage | Variate Size | Model | Modeling Set | Validation Set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE | Rv2 | RMSEv | RPDv | |||
FF | 12 | SVR | 0.688 | 0.283 | 0.736 | 0.274 | 1.947 |
RFR | 0.868 | 0.184 | 0.721 | 0.281 | 1.900 | ||
CatBoost | 0.807 | 0.216 | 0.788 | 0.237 | 2.172 | ||
FS | 9 | SVR | 0.733 | 0.350 | 0.707 | 0.329 | 1.847 |
RFR | 0.752 | 0.318 | 0.708 | 0.382 | 1.849 | ||
CatBoost | 0.799 | 0.277 | 0.770 | 0.323 | 2.084 | ||
FE | 7 | SVR | 0.703 | 0.395 | 0.708 | 0.431 | 1.852 |
RFR | 0.782 | 0.358 | 0.716 | 0.374 | 1.875 | ||
CatBoost | 0.798 | 0.277 | 0.769 | 0.323 | 2.083 |
Growth Stage | Texture Feature and Index |
---|---|
FF | DTISEC-R/MEAN-NIR NDTICORR-R/SEC-RE RTICORR-R/SEC-RE MEAN-NIR |
FS | RTISEC-G/SEC-R RTIMEAN-G/MEAN-R DTISEC-R/MEAN-NIR |
FE | DTIMEAN-R/MEAN-NIR DTISEC-R/MEAN-NIR RTIMEAN-R/SEC-RE NDTIMEAN-R/SEC-RE MEAN-NIR |
Growth Stage | Variates Size | Model | Modeling Set | Validation Set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE | Rv2 | RMSEv | RPDv | |||
FF | 16 | SVR | 0.859 | 0.248 | 0.795 | 0.253 | 2.123 |
RFR | 0.877 | 0.195 | 0.755 | 0.264 | 2.018 | ||
CatBoost | 0.941 | 0.190 | 0.867 | 0.203 | 2.482 | ||
FS | 12 | SVR | 0.840 | 0.252 | 0.811 | 0.313 | 2.314 |
RFR | 0.868 | 0.244 | 0.787 | 0.286 | 2.165 | ||
CatBoost | 0.899 | 0.227 | 0.858 | 0.273 | 2.411 | ||
FE | 12 | SVR | 0.815 | 0.303 | 0.797 | 0.373 | 2.263 |
RFR | 0.935 | 0.180 | 0.815 | 0.356 | 2.378 | ||
CatBoost | 0.913 | 0.200 | 0.840 | 0.280 | 2.386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhang, Y.; Song, Z.; Jiang, D.; Guo, Y.; Liu, Y.; Chang, Q. Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information. Remote Sens. 2024, 16, 3237. https://doi.org/10.3390/rs16173237
Yu J, Zhang Y, Song Z, Jiang D, Guo Y, Liu Y, Chang Q. Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information. Remote Sensing. 2024; 16(17):3237. https://doi.org/10.3390/rs16173237
Chicago/Turabian StyleYu, Junru, Yu Zhang, Zhenghua Song, Danyao Jiang, Yiming Guo, Yanfu Liu, and Qingrui Chang. 2024. "Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information" Remote Sensing 16, no. 17: 3237. https://doi.org/10.3390/rs16173237
APA StyleYu, J., Zhang, Y., Song, Z., Jiang, D., Guo, Y., Liu, Y., & Chang, Q. (2024). Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information. Remote Sensing, 16(17), 3237. https://doi.org/10.3390/rs16173237