Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Spatial Mapping of Indicators of HES
2.2.2. Hot and Cold Spots Identification Approaches
2.2.3. Assigning Weights to HESs
- Approach 1: Equal weight (EW method)
- Approach 2: Unequal Weights (Iyengar and Sudarshan’s method)
- Approach 3: Analytical Hierarchy Process (AHP method)
- Approach 4: Principal Component Analysis (PCA method)
2.2.4. Trade-Off and Synergy Analysis among HES
3. Results
3.1. Identification and Spatial Mapping of Hot and Cold Spots Regions of HES
3.2. Pixel-Level Uncertainty in Hot and Cold Spot Maps
3.3. Trade-Offs and Synergies Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkenmark, M. Good Ecosystem Governance: Balancing Ecosystems and Social Needs. In Governance as a Trialogue: Government-Society-Science in Transition; Springer: Berlin/Heidelberg, Germany, 2007; pp. 59–76. [Google Scholar]
- Mallick, M.; Singh, P.K.; Pandey, R. Harvesting resilience: Tribal home-gardens as socio-ecological solutions for climate change adaptation and sustainable development in a protected area. J. Clean. Prod. 2024, 445, 141174. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Huang, F.; Zuo, L.; Gao, J.; Jiang, Y.; Du, F.; Zhang, Y. Exploring the driving factors of trade-offs and synergies among ecological functional zones based on ecosystem service bundles. Ecol. Indic. 2023, 146, 109827. [Google Scholar] [CrossRef]
- Cimon-Morin, J.; Darveau, M.; Poulin, M. Fostering synergies between ecosystem services and biodiversity in conservation planning: A review. Biol. Conserv. 2013, 166, 144–154. [Google Scholar] [CrossRef]
- Gos, P.; Lavorel, S. Stakeholders’ expectations on ecosystem services affect the assessment of ecosystem services hotspots and their congruence with biodiversity. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 93–106. [Google Scholar] [CrossRef]
- Schröter, M.; Remme, R.P. Spatial prioritisation for conserving ecosystem services: Comparing hotspots with heuristic optimisation. Landsc. Ecol. 2016, 31, 431–450. [Google Scholar] [CrossRef]
- Schwartz, C.; Klebl, F.; Ungaro, F.; Bellingrath-Kimura, S.-D.; Piorr, A. Comparing participatory mapping and a spatial biophysical assessment of ecosystem service cold spots in agricultural landscapes. Ecol. Indic. 2022, 145, 109700. [Google Scholar] [CrossRef]
- Brown, G.; Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecosyst. Serv. 2015, 13, 119–133. [Google Scholar] [CrossRef]
- Huang, Z.; Qian, L.; Cao, W. Developing a novel approach integrating ecosystem services and biodiversity for identifying priority ecological reserves. Resour. Conserv. Recycl. 2022, 179, 106128. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Ancona, Z.H.; Sherrouse, B.C. Evaluating alternative methods for biophysical and cultural ecosystem services hotspot mapping in natural resource planning. Landsc. Ecol. 2017, 32, 77–97. [Google Scholar] [CrossRef]
- Lourdes, K.T.; Hamel, P.; Gibbins, C.N.; Sanusi, R.; Azhar, B.; Lechner, A.M. Planning for green infrastructure using multiple urban ecosystem service models and multicriteria analysis. Landsc. Urban Plan. 2022, 226, 104500. [Google Scholar] [CrossRef]
- Raymond, C.; Curtis, A. Mapping Community Values for Regional Sustainability in the Lower Hunter Region; University of Tasmania: Hobart, TAS, Australia, 2013. [Google Scholar]
- Van Riper, C.J.; Kyle, G.T.; Sutton, S.G.; Barnes, M.; Sherrouse, B.C. Mapping outdoor recreationists’ perceived social values for ecosystem services at Hinchinbrook Island National Park, Australia. Appl. Geogr. 2012, 35, 164–173. [Google Scholar] [CrossRef]
- Queiroz, C.; Meacham, M.; Richter, K.; Norström, A.V.; Andersson, E.; Norberg, J.; Peterson, G. Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a Swedish landscape. Ambio 2015, 44, 89–101. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Onaindia, M.; de Manuel, B.F.; Madariaga, I.; Rodríguez-Loinaz, G. Co-benefits and trade-offs between biodiversity, carbon storage and water flow regulation. For. Ecol. Manag. 2013, 289, 1–9. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.J.; Konold, W.; Schmitt, C.B. Community mapping of ecosystem services in tropical rainforest of Ecuador. Ecol. Indic. 2017, 73, 460–471. [Google Scholar] [CrossRef]
- Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L. Congruencias espaciales entre biodiversidad y servicios ecosistémicos en un paisaje forestal en el sur de Chile: Bases para la planificación de la conservación. Bosque 2017, 38, 495–506. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services-A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Decsi, B.; Ács, T.; Jolánkai, Z.; Kardos, M.K.; Koncsos, L.; Vári, Á.; Kozma, Z. From simple to complex–comparing four modelling tools for quantifying hydrologic ecosystem services. Ecol. Indic. 2022, 141, 109143. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Yan, J.; Wang, P.; Hu, N.; Cheng, W.; Fu, B. Mapping the hotspots and coldspots of ecosystem services in conservation priority setting. J. Geogr. Sci. 2017, 27, 681–696. [Google Scholar] [CrossRef]
- Fu, B.-J.; Su, C.-H.; Wei, Y.-P.; Willett, I.R.; Lü, Y.-H.; Liu, G.-H. Double counting in ecosystem services valuation: Causes and countermeasures. Ecol. Res. 2011, 26, 1–14. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.E.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Gwal, S.; Gupta, S.; Sena, D.R.; Singh, S. Geospatial modeling of hydrological ecosystem services in an ungauged upper Yamuna catchment using SWAT. Ecol. Inform. 2023, 78, 102335. [Google Scholar] [CrossRef]
- TEEB, R.O. Mainstreaming the Economics of Nature; TEEB: Geneva, Switzerland, 2010. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services; Centre for Environmental Management, University of Nottingham: Nottingham, UK, 2012. [Google Scholar]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Egoh, B.; Drakou, E.G.; Dunbar, M.B.; Maes, J.; Willemen, L. Indicators for Mapping Ecosystem Services: A Review; European Commission, Joint Research Centre (JRC): Ispra, Italy, 2012. [Google Scholar]
- Schmalz, B.; Kruse, M.; Kiesel, J.; Müller, F.; Fohrer, N. Water-related ecosystem services in Western Siberian lowland basins—Analysing and mapping spatial and seasonal effects on regulating services based on ecohydrological modelling results. Ecol. Indic. 2016, 71, 55–65. [Google Scholar] [CrossRef]
- Mokondoko, P.; Manson, R.H.; Jiménez, L.C. Mapping and Monitoring of Ecosystem Services in Central Veracruz, Mexico, to Strengthen Payments for Ecosystem Services and Promote Integrated Watersheds Management; Instituto de Ecología A.C: Xalapa, Mexico, 2018. [Google Scholar]
- Stefanidis, S.; Proutsos, N.; Alexandridis, V.; Mallinis, G. Ecosystem Services Supply from Peri-Urban Watersheds in Greece: Soil Conservation and Water Retention. Land 2024, 13, 765. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Pandeya, B.; Mulligan, M. Modelling crop evapotranspiration and potential impacts on future water availability in the Indo-Gangetic Basin. Agric. Water Manag. 2013, 129, 163–172. [Google Scholar] [CrossRef]
- Shukla, A.K.; Pathak, S.; Pal, L.; Ojha, C.S.P.; Mijic, A.; Garg, R.D. Spatio-temporal assessment of annual water balance models for upper Ganga Basin. Hydrol. Earth Syst. Sci. 2018, 22, 5357–5371. [Google Scholar] [CrossRef]
- Pathak, S.; Ojha, C.; Garg, R. Applicability of the InVEST Model for Estimating Water Yield in Upper Ganga Basin. In The Ganga River Basin: A Hydrometeorological Approach; Chauhan, M.S., Ojha, C.S.P., Eds.; Springer: Cham, Switzerland, 2021; pp. 219–231. [Google Scholar]
- Qazi, N. Hydrological functioning of forested catchments, central Himalayan region, India. For. Ecosyst. 2020, 7, 63. [Google Scholar] [CrossRef]
- Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.P.; Senent-Aparicio, J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021, 13, 2014. [Google Scholar] [CrossRef]
- Gupta, S.; Gwal, S.; Singh, S. Spatial characterization of forest ecosystem services and human-induced complexities in Himalayan biodiversity hotspot area. Environ. Monit. Assess. 2023, 195, 1335. [Google Scholar] [CrossRef]
- Momblanch, A.; Beevers, L.; Srinivasalu, P.; Kulkarni, A.; Holman, I.P. Enhancing production and flow of freshwater ecosystem services in a managed Himalayan river system under uncertain future climate. Clim. Chang. 2020, 162, 343–361. [Google Scholar] [CrossRef]
- Lepcha, P.T.; Pandey, P.K.; Ranjan, P. Hydrological significance of Himalayan surface water and its management considering anthropogenic and climate change aspects. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1020, 012013. [Google Scholar] [CrossRef]
- Qazi, N.Q.; Jain, S.K.; Thayyen, R.J.; Patil, P.R.; Singh, M.K. Hydrology of the Himalayas. In Himalayan Weather and Climate and Their Impact on the Environment; Dimri, A., Bookhagen, B., Stoffel, M., Yasunari, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 419–450. [Google Scholar]
- Champion, H.G.; Seth, S.K. A Revised Survey of the Forest Types of India; Manager of Publications: Delhi, India, 1968. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Williams, J. Sediment routing for agricultural watersheds. J. Am. Water Resour. Assoc. 1975, 11, 965–974. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Merz, R.; Blöschl, G. Regionalisation of catchment model parameters. J. Hydrol. 2004, 287, 95–123. [Google Scholar] [CrossRef]
- Parajka, J.; Merz, R.; Blöschl, G. A comparison of regionalisation methods for catchment model parameters. Hydrol. Earth Syst. Sci. 2005, 9, 157–171. [Google Scholar] [CrossRef]
- Sisay, E.; Halefom, A.; Khare, D.; Singh, L.; Worku, T. Hydrological modelling of ungauged urban watershed using SWAT model. Model. Earth Syst. Environ. 2017, 3, 693–702. [Google Scholar] [CrossRef]
- Ergen, K.; Kentel, E. An integrated map correlation method and multiple-source sites drainage-area ratio method for estimating streamflows at ungauged catchments: A case study of the Western Black Sea Region, Turkey. J. Environ. Manag. 2016, 166, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Tegegne, G.; Kim, Y.-O. Modelling ungauged catchments using the catchment runoff response similarity. J. Hydrol. 2018, 564, 452–466. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Paudyal, K.; Samsudin, Y.B.; Baral, H.; Okarda, B.; Phuong, V.T.; Paudel, S.; Keenan, R.J. Spatial assessment of ecosystem services from planted forests in central Vietnam. Forests 2020, 11, 822. [Google Scholar] [CrossRef]
- Iyengar, N.S.; Sudarshan, P. A method of classifying regions from multivariate data. Econ. Political Wkly. 1982, 17, 2047–2052. [Google Scholar]
- Saaty, T. The Analytic Hierarchy Process (AHP) for Decision Making; McGraw-Hill: London, UK, 1980; pp. 1–69. [Google Scholar]
- Naudiyal, N.; Schmerbeck, J. Potential distribution of oak forests in the central Himalayas and implications for future ecosystem services supply to rural communities. Ecosyst. Serv. 2021, 50, 101310. [Google Scholar] [CrossRef]
- Negi, G. Trees, forests and people: The Central Himalayan case of forest ecosystem services. Trees For. People 2022, 8, 100222. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Geneletti, D.; Scolozzi, R.; Adem Esmail, B. Assessing ecosystem services and biodiversity tradeoffs across agricultural landscapes in a mountain region. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 188–208. [Google Scholar] [CrossRef]
- Padilha, J.; Carvalho-Santos, C.; Cássio, F.; Pascoal, C. Land cover implications on ecosystem service delivery: A multi-scenario study of trade-offs and synergies in river basins. Environ. Manag. 2024, 73, 753–768. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Jorge-García, D.; Estruch-Guitart, V. Comparative analysis between AHP and ANP in prioritization of ecosystem services—A case study in a rice field area raised in the Guadalquivir marshes (Spain). Ecol. Inform. 2022, 70, 101739. [Google Scholar] [CrossRef]
- Perry, J.; Liebhold, A.; Rosenberg, M.; Dungan, J.; Miriti, M.; Jakomulska, A.; Citron-Pousty, S. Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 2002, 25, 578–600. [Google Scholar] [CrossRef]
- Crouzat, E.; Mouchet, M.; Turkelboom, F.; Byczek, C.; Meersmans, J.; Berger, F.; Verkerk, P.J.; Lavorel, S. Assessing bundles of ecosystem services from regional to landscape scale: Insights from the French A lps. J. Appl. Ecol. 2015, 52, 1145–1155. [Google Scholar] [CrossRef]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing–Tianjin–Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Gong, J.; Liu, D.; Zhang, J.; Xie, Y.; Cao, E.; Li, H. Tradeoffs/synergies of multiple ecosystem services based on land use simulation in a mountain-basin area, western China. Ecol. Indic. 2019, 99, 283–293. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, X.; Zhou, G.; Agathokleous, E.; Li, L.; Liu, Z.; Wu, J.; Zhou, P.; Xue, M.; Chen, Y. Natural forest growth and human induced ecosystem disturbance influence water yield in forests. Commun. Earth Environ. 2022, 3, 148. [Google Scholar] [CrossRef]
- Lele, S. Watershed services of tropical forests: From hydrology to economic valuation to integrated analysis. Curr. Opin. Environ. Sustain. 2009, 1, 148–155. [Google Scholar] [CrossRef]
- Qazi, N.Q.; Bruijnzeel, L.A.; Rai, S.P.; Ghimire, C.P. Impact of forest degradation on streamflow regime and runoff response to rainfall in the Garhwal Himalaya, Northwest India. Hydrol. Sci. J. 2017, 62, 1114–1130. [Google Scholar] [CrossRef]
ESs Categories (Definitions) | HES Descriptors | Hydrological Flux Components | Justifications |
---|---|---|---|
Provisioning Services (Raw, tangible materials or resources produced by natural ecosystems and directly utilized by humans) | Water yield (WYLD) (+). | Water yield components includes the sum of surface runoff, base flow, ground water contribution, net transmission losses | These are ecosystem goods responsible for providing freshwater for sustaining life both for flora and fauna |
Regulating Services (Benefits obtained from the regulation of ecosystem processes) | Total water retention (TWR) (+) An aggregate of soil water retained in soil profile and percolation. Surface Runoff (SURFQ) (−), Base flow (LATQ) (+) | Hydrological fluxes in their individual capacities, including net water retained during the year, the surface runoff leaving the catchment, and base flow that regulates the climate | The regulating needs are environmental flow, soil moisture regime for growth of life |
Supporting Services (Services those are necessary for the production of all other ESs) | Sediment yield (SYLD) (−) Crop productivity regulated by (1-AET/PET), i.e., Crop yield response factor (CYF) (+) | Sediment yield and AET and PET components | SYLD surrogate indicators for retaining of the soil due to reduced erosion. Hydrological proxy for net primary productivity (NPP). |
HES Descriptors | |||||||
---|---|---|---|---|---|---|---|
Weightage Methods | WYLD | TWR | SURFQ | LATQ | SYLD | CYF = 1 − AET/PET | Sum |
I and S | 0.176 | 0.144 | 0.177 | 0.163 | 0.161 | 0.178 | 1.0 |
EW | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 1.0 |
PCA | 0.180 | 0.145 | 0.188 | 0.154 | 0.147 | 0.186 | 1.0 |
AHP | 0.147 | 0.187 | 0.146 | 0.189 | 0.178 | 0.152 | 1.0 |
Median | 0.1715 | 0.156 | 0.172 | 0.1649 | 0.1640 | 0.1722 | 1.0 |
Provisioning Service (0.33) | Regulating Services (0.33) | Supporting Services (0.33) | |||||
---|---|---|---|---|---|---|---|
HES Descriptors | |||||||
Weightage Methods | WYLD | TWR | SURFQ | LATQ | SYLD | CYF = 1 − AET/PET | Sum |
I and S | 0.330 | 0.098 | 0.120 | 0.111 | 0.157 | 0.173 | 1.0 |
EW | 0.330 | 0.110 | 0.110 | 0.110 | 0.165 | 0.165 | 1.0 |
PCA | 0.330 | 0.098 | 0.127 | 0.104 | 0.146 | 0.184 | 1.0 |
AHP | 0.330 | 0.118 | 0.092 | 0.120 | 0.178 | 0.152 | 1.0 |
Median | 0.330 | 0.104 | 0.115 | 0.111 | 0.161 | 0.169 | 1.0 |
Method-1 | Method-2 | |||||
---|---|---|---|---|---|---|
Sl. No. | Median Class | Median Categories | Area (km2) | % Area Contribution | Area (km2) | % Area Contribution |
1 | 0.0–0.2 | Very low | 0.79 | 0.268 | 7.23 | 2.42 |
2 | 0.2–0.4 | Low | 29.94 | 10.04 | 43.96 | 14.74 |
3 | 0.4–0.6 | Moderate | 74.14 | 24.86 | 148.39 | 49.76 |
4 | 0.6–0.8 | High | 183.86 | 61.65 | 91.58 | 30.71 |
5 | 0.8–1.0 | Very high | 9.48 | 3.18 | 7.05 | 2.36 |
Method-1 | Method-2 | ||
---|---|---|---|
Mode Class | Mode Categories | Area (km2) | Area (km2) |
1 | Very low | 0.57 | 2.30 |
2 | Low | 13.35 | 34.92 |
3 | Moderate | 45.23 | 113.79 |
4 | High | 154.62 | 80.46 |
5 | Very high | 6.86 | 6.97 |
Sl No. | Land Use Classes | Median Weights | % Contribution of Land Use |
---|---|---|---|
1 | Agriculture | 0.515 | 5.8 |
2 | Cedrus deodara forest | 1.467 | 16.6 |
3 | Mixed forest | 1.299 | 14.7 |
4 | Grasslands | 1.292 | 14.6 |
5 | Quercus forest | 1.657 | 18.8 |
6 | Pinus roxburghii forest | 1.193 | 13.5 |
7 | Scrubs | 1.415 | 16.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwal, S.; Sena, D.R.; Srivastava, P.K.; Srivastava, S.K. Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale. Remote Sens. 2024, 16, 3409. https://doi.org/10.3390/rs16183409
Gwal S, Sena DR, Srivastava PK, Srivastava SK. Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale. Remote Sensing. 2024; 16(18):3409. https://doi.org/10.3390/rs16183409
Chicago/Turabian StyleGwal, Srishti, Dipaka Ranjan Sena, Prashant K. Srivastava, and Sanjeev K. Srivastava. 2024. "Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale" Remote Sensing 16, no. 18: 3409. https://doi.org/10.3390/rs16183409
APA StyleGwal, S., Sena, D. R., Srivastava, P. K., & Srivastava, S. K. (2024). Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale. Remote Sensing, 16(18), 3409. https://doi.org/10.3390/rs16183409