Spatiotemporal Prediction of Conflict Fatality Risk Using Convolutional Neural Networks and Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Training
2.3. Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Metrics
Appendix A.1. Confusion Matrix
Data | Version | Thresh | tp | tn | fp | fn |
---|---|---|---|---|---|---|
2016 imagery, 2017 conflict [July–December] | v1001 | 0.3 | 0.879 | 0.484 | 0.516 | 0.121 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.35 | 0.879 | 0.516 | 0.484 | 0.121 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.4 | 0.879 | 0.548 | 0.452 | 0.121 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.45 | 0.862 | 0.629 | 0.371 | 0.138 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.5 | 0.845 | 0.645 | 0.355 | 0.155 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.3 | 0.897 | 0.559 | 0.441 | 0.103 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.35 | 0.845 | 0.627 | 0.373 | 0.155 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.4 | 0.845 | 0.644 | 0.356 | 0.155 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.45 | 0.845 | 0.661 | 0.339 | 0.155 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.5 | 0.81 | 0.695 | 0.305 | 0.19 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.3 | 0.947 | 0.346 | 0.654 | 0.053 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.35 | 0.895 | 0.462 | 0.538 | 0.105 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.4 | 0.895 | 0.519 | 0.481 | 0.105 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.45 | 0.877 | 0.596 | 0.404 | 0.123 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.5 | 0.842 | 0.654 | 0.346 | 0.158 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.3 | 0.914 | 0.582 | 0.418 | 0.086 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.35 | 0.897 | 0.709 | 0.291 | 0.103 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.4 | 0.879 | 0.745 | 0.255 | 0.121 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.45 | 0.793 | 0.764 | 0.236 | 0.207 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.5 | 0.707 | 0.855 | 0.145 | 0.293 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.3 | 0.877 | 0.517 | 0.483 | 0.123 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.35 | 0.825 | 0.6 | 0.4 | 0.175 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.4 | 0.825 | 0.617 | 0.383 | 0.175 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.45 | 0.807 | 0.617 | 0.383 | 0.193 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.5 | 0.807 | 0.667 | 0.333 | 0.193 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.3 | 0.95 | 0.575 | 0.425 | 0.05 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.35 | 0.925 | 0.675 | 0.325 | 0.075 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.4 | 0.925 | 0.7 | 0.3 | 0.075 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.45 | 0.875 | 0.7 | 0.3 | 0.125 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.5 | 0.875 | 0.7 | 0.3 | 0.125 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.3 | 0.821 | 0.632 | 0.368 | 0.179 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.35 | 0.744 | 0.658 | 0.342 | 0.256 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.4 | 0.692 | 0.658 | 0.342 | 0.308 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.45 | 0.692 | 0.711 | 0.289 | 0.308 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.5 | 0.667 | 0.789 | 0.211 | 0.333 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.3 | 0.775 | 0.615 | 0.385 | 0.225 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.35 | 0.725 | 0.744 | 0.256 | 0.275 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.4 | 0.7 | 0.795 | 0.205 | 0.3 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.45 | 0.675 | 0.795 | 0.205 | 0.325 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.5 | 0.65 | 0.821 | 0.179 | 0.35 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.3 | 0.825 | 0.61 | 0.39 | 0.175 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.35 | 0.825 | 0.634 | 0.366 | 0.175 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.4 | 0.775 | 0.659 | 0.341 | 0.225 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.45 | 0.7 | 0.683 | 0.317 | 0.3 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.5 | 0.7 | 0.683 | 0.317 | 0.3 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.3 | 0.9 | 0.576 | 0.424 | 0.1 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.35 | 0.9 | 0.697 | 0.303 | 0.1 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.4 | 0.875 | 0.818 | 0.182 | 0.125 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.45 | 0.85 | 0.848 | 0.152 | 0.15 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.5 | 0.85 | 0.848 | 0.152 | 0.15 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.3 | 0.951 | 0.456 | 0.544 | 0.049 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.35 | 0.902 | 0.534 | 0.466 | 0.098 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.4 | 0.853 | 0.66 | 0.34 | 0.147 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.45 | 0.824 | 0.728 | 0.272 | 0.176 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.5 | 0.775 | 0.777 | 0.223 | 0.225 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.3 | 0.912 | 0.509 | 0.491 | 0.088 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.35 | 0.892 | 0.557 | 0.443 | 0.108 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.4 | 0.843 | 0.623 | 0.377 | 0.157 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.45 | 0.765 | 0.651 | 0.349 | 0.235 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.5 | 0.725 | 0.736 | 0.264 | 0.275 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.3 | 0.931 | 0.485 | 0.515 | 0.069 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.35 | 0.892 | 0.526 | 0.474 | 0.108 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.4 | 0.853 | 0.619 | 0.381 | 0.147 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.45 | 0.804 | 0.732 | 0.268 | 0.196 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.5 | 0.765 | 0.814 | 0.186 | 0.235 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.3 | 0.971 | 0.469 | 0.531 | 0.029 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.35 | 0.951 | 0.531 | 0.469 | 0.049 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.4 | 0.931 | 0.582 | 0.418 | 0.069 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.45 | 0.863 | 0.643 | 0.357 | 0.137 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.5 | 0.814 | 0.724 | 0.276 | 0.186 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.3 | 0.922 | 0.529 | 0.471 | 0.078 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.35 | 0.912 | 0.558 | 0.442 | 0.088 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.4 | 0.873 | 0.587 | 0.413 | 0.127 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.45 | 0.863 | 0.625 | 0.375 | 0.137 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.5 | 0.755 | 0.692 | 0.308 | 0.245 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.3 | 0.742 | 0.725 | 0.275 | 0.258 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.35 | 0.726 | 0.739 | 0.261 | 0.274 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.4 | 0.726 | 0.754 | 0.246 | 0.274 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.45 | 0.726 | 0.768 | 0.232 | 0.274 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.5 | 0.726 | 0.783 | 0.217 | 0.274 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.3 | 0.79 | 0.597 | 0.403 | 0.21 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.35 | 0.79 | 0.645 | 0.355 | 0.21 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.4 | 0.79 | 0.661 | 0.339 | 0.21 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.45 | 0.774 | 0.726 | 0.274 | 0.226 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.5 | 0.758 | 0.742 | 0.258 | 0.242 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.3 | 0.81 | 0.623 | 0.377 | 0.19 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.35 | 0.778 | 0.623 | 0.377 | 0.222 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.4 | 0.762 | 0.672 | 0.328 | 0.238 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.45 | 0.746 | 0.689 | 0.311 | 0.254 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.5 | 0.73 | 0.689 | 0.311 | 0.27 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.3 | 0.645 | 0.716 | 0.284 | 0.355 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.35 | 0.629 | 0.731 | 0.269 | 0.371 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.4 | 0.597 | 0.791 | 0.209 | 0.403 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.45 | 0.581 | 0.806 | 0.194 | 0.419 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.5 | 0.565 | 0.866 | 0.134 | 0.435 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.3 | 0.887 | 0.464 | 0.536 | 0.113 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.35 | 0.871 | 0.5 | 0.5 | 0.129 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.4 | 0.855 | 0.571 | 0.429 | 0.145 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.45 | 0.806 | 0.625 | 0.375 | 0.194 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.5 | 0.774 | 0.75 | 0.25 | 0.226 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.3 | 0.708 | 0.5 | 0.5 | 0.292 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.35 | 0.652 | 0.556 | 0.444 | 0.348 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.4 | 0.618 | 0.611 | 0.389 | 0.382 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.45 | 0.562 | 0.656 | 0.344 | 0.438 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.5 | 0.551 | 0.722 | 0.278 | 0.449 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.3 | 0.798 | 0.551 | 0.449 | 0.202 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.35 | 0.764 | 0.551 | 0.449 | 0.236 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.4 | 0.719 | 0.584 | 0.416 | 0.281 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.45 | 0.685 | 0.618 | 0.382 | 0.315 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.5 | 0.663 | 0.697 | 0.303 | 0.337 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.3 | 0.843 | 0.371 | 0.629 | 0.157 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.35 | 0.831 | 0.416 | 0.584 | 0.169 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.4 | 0.787 | 0.517 | 0.483 | 0.213 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.45 | 0.764 | 0.562 | 0.438 | 0.236 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.5 | 0.742 | 0.573 | 0.427 | 0.258 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.3 | 0.867 | 0.333 | 0.667 | 0.133 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.35 | 0.833 | 0.398 | 0.602 | 0.167 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.4 | 0.811 | 0.43 | 0.57 | 0.189 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.45 | 0.744 | 0.484 | 0.516 | 0.256 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.5 | 0.711 | 0.548 | 0.452 | 0.289 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.3 | 0.876 | 0.443 | 0.557 | 0.124 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.35 | 0.831 | 0.545 | 0.455 | 0.169 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.4 | 0.809 | 0.58 | 0.42 | 0.191 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.45 | 0.775 | 0.602 | 0.398 | 0.225 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.5 | 0.764 | 0.67 | 0.33 | 0.236 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.3 | 0.743 | 0.503 | 0.497 | 0.257 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.35 | 0.694 | 0.531 | 0.469 | 0.306 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.4 | 0.667 | 0.559 | 0.441 | 0.333 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.45 | 0.625 | 0.614 | 0.386 | 0.375 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.5 | 0.611 | 0.676 | 0.324 | 0.389 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.3 | 0.972 | 0.239 | 0.761 | 0.028 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.35 | 0.951 | 0.331 | 0.669 | 0.049 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.4 | 0.917 | 0.486 | 0.514 | 0.083 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.45 | 0.882 | 0.606 | 0.394 | 0.118 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.5 | 0.729 | 0.711 | 0.289 | 0.271 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.3 | 0.917 | 0.329 | 0.671 | 0.083 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.35 | 0.896 | 0.4 | 0.6 | 0.104 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.4 | 0.833 | 0.465 | 0.535 | 0.167 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.45 | 0.771 | 0.548 | 0.452 | 0.229 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.5 | 0.722 | 0.632 | 0.368 | 0.278 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.3 | 0.855 | 0.385 | 0.615 | 0.145 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.35 | 0.814 | 0.413 | 0.587 | 0.186 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.4 | 0.779 | 0.455 | 0.545 | 0.221 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.45 | 0.703 | 0.566 | 0.434 | 0.297 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.5 | 0.634 | 0.636 | 0.364 | 0.366 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.3 | 0.951 | 0.338 | 0.662 | 0.049 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.35 | 0.924 | 0.441 | 0.559 | 0.076 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.4 | 0.882 | 0.531 | 0.469 | 0.118 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.45 | 0.84 | 0.593 | 0.407 | 0.16 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.5 | 0.757 | 0.641 | 0.359 | 0.243 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.3 | 0.957 | 0.291 | 0.709 | 0.043 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.35 | 0.94 | 0.325 | 0.675 | 0.06 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.4 | 0.915 | 0.41 | 0.59 | 0.085 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.45 | 0.872 | 0.521 | 0.479 | 0.128 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.5 | 0.821 | 0.641 | 0.359 | 0.179 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.3 | 0.847 | 0.648 | 0.352 | 0.153 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.35 | 0.788 | 0.697 | 0.303 | 0.212 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.4 | 0.78 | 0.738 | 0.262 | 0.22 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.45 | 0.763 | 0.779 | 0.221 | 0.237 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.5 | 0.737 | 0.803 | 0.197 | 0.263 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.3 | 0.829 | 0.645 | 0.355 | 0.171 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.35 | 0.803 | 0.685 | 0.315 | 0.197 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.4 | 0.795 | 0.734 | 0.266 | 0.205 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.45 | 0.769 | 0.774 | 0.226 | 0.231 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.5 | 0.769 | 0.79 | 0.21 | 0.231 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.3 | 0.803 | 0.653 | 0.347 | 0.197 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.35 | 0.803 | 0.669 | 0.331 | 0.197 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.4 | 0.778 | 0.702 | 0.298 | 0.222 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.45 | 0.744 | 0.727 | 0.273 | 0.256 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.5 | 0.718 | 0.785 | 0.215 | 0.282 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.3 | 0.846 | 0.622 | 0.378 | 0.154 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.35 | 0.821 | 0.63 | 0.37 | 0.179 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.4 | 0.821 | 0.647 | 0.353 | 0.179 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.45 | 0.795 | 0.681 | 0.319 | 0.205 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.5 | 0.786 | 0.739 | 0.261 | 0.214 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.3 | 0.655 | 0.567 | 0.433 | 0.345 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.35 | 0.655 | 0.633 | 0.367 | 0.345 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.4 | 0.636 | 0.65 | 0.35 | 0.364 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.45 | 0.6 | 0.7 | 0.3 | 0.4 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.5 | 0.564 | 0.75 | 0.25 | 0.436 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.3 | 0.704 | 0.49 | 0.51 | 0.296 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.35 | 0.685 | 0.51 | 0.49 | 0.315 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.4 | 0.63 | 0.569 | 0.431 | 0.37 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.45 | 0.63 | 0.627 | 0.373 | 0.37 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.5 | 0.593 | 0.686 | 0.314 | 0.407 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.3 | 0.782 | 0.583 | 0.417 | 0.218 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.35 | 0.764 | 0.625 | 0.375 | 0.236 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.4 | 0.727 | 0.625 | 0.375 | 0.273 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.45 | 0.636 | 0.667 | 0.333 | 0.364 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.5 | 0.6 | 0.771 | 0.229 | 0.4 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.3 | 0.8 | 0.328 | 0.672 | 0.2 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.35 | 0.782 | 0.426 | 0.574 | 0.218 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.4 | 0.745 | 0.492 | 0.508 | 0.255 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.45 | 0.691 | 0.623 | 0.377 | 0.309 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.5 | 0.564 | 0.721 | 0.279 | 0.436 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.3 | 0.709 | 0.537 | 0.463 | 0.291 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.35 | 0.673 | 0.593 | 0.407 | 0.327 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.4 | 0.655 | 0.611 | 0.389 | 0.345 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.45 | 0.636 | 0.63 | 0.37 | 0.364 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.5 | 0.564 | 0.722 | 0.278 | 0.436 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.3 | 0.75 | 0.508 | 0.492 | 0.25 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.35 | 0.733 | 0.576 | 0.424 | 0.267 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.4 | 0.7 | 0.61 | 0.39 | 0.3 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.45 | 0.7 | 0.661 | 0.339 | 0.3 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.5 | 0.683 | 0.763 | 0.237 | 0.317 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.3 | 0.933 | 0.475 | 0.525 | 0.067 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.35 | 0.933 | 0.492 | 0.508 | 0.067 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.4 | 0.883 | 0.59 | 0.41 | 0.117 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.45 | 0.883 | 0.639 | 0.361 | 0.117 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.5 | 0.883 | 0.639 | 0.361 | 0.117 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.3 | 0.833 | 0.542 | 0.458 | 0.167 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.35 | 0.75 | 0.61 | 0.39 | 0.25 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.4 | 0.717 | 0.678 | 0.322 | 0.283 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.45 | 0.717 | 0.763 | 0.237 | 0.283 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.5 | 0.717 | 0.814 | 0.186 | 0.283 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.3 | 0.85 | 0.492 | 0.508 | 0.15 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.35 | 0.783 | 0.525 | 0.475 | 0.217 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.4 | 0.767 | 0.593 | 0.407 | 0.233 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.45 | 0.767 | 0.61 | 0.39 | 0.233 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.5 | 0.767 | 0.627 | 0.373 | 0.233 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.3 | 0.833 | 0.557 | 0.443 | 0.167 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.35 | 0.817 | 0.59 | 0.41 | 0.183 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.4 | 0.8 | 0.59 | 0.41 | 0.2 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.45 | 0.783 | 0.689 | 0.311 | 0.217 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.5 | 0.783 | 0.705 | 0.295 | 0.217 |
Appendix A.2. Performance Metrics
Data | Version | Thresh | Accuracy | Precision | Recall | f1 |
---|---|---|---|---|---|---|
2016 imagery, 2017 conflict [July–December] | v1001 | 0.3 | 0.675 | 0.614 | 0.879 | 0.723 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.35 | 0.692 | 0.63 | 0.879 | 0.734 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.4 | 0.708 | 0.646 | 0.879 | 0.745 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.45 | 0.742 | 0.685 | 0.862 | 0.763 |
2016 imagery, 2017 conflict [July–December] | v1001 | 0.5 | 0.742 | 0.69 | 0.845 | 0.76 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.3 | 0.726 | 0.667 | 0.897 | 0.765 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.35 | 0.735 | 0.69 | 0.845 | 0.76 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.4 | 0.744 | 0.7 | 0.845 | 0.766 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.45 | 0.752 | 0.71 | 0.845 | 0.772 |
2016 imagery, 2017 conflict [July–December] | v1002 | 0.5 | 0.752 | 0.723 | 0.81 | 0.764 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.3 | 0.661 | 0.614 | 0.947 | 0.745 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.35 | 0.688 | 0.646 | 0.895 | 0.75 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.4 | 0.716 | 0.671 | 0.895 | 0.767 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.45 | 0.743 | 0.704 | 0.877 | 0.781 |
2016 imagery, 2017 conflict [July–December] | v1003 | 0.5 | 0.752 | 0.727 | 0.842 | 0.78 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.3 | 0.752 | 0.697 | 0.914 | 0.791 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.35 | 0.805 | 0.765 | 0.897 | 0.825 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.4 | 0.814 | 0.785 | 0.879 | 0.829 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.45 | 0.779 | 0.78 | 0.793 | 0.786 |
2016 imagery, 2017 conflict [July–December] | v1004 | 0.5 | 0.779 | 0.837 | 0.707 | 0.766 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.3 | 0.692 | 0.633 | 0.877 | 0.735 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.35 | 0.709 | 0.662 | 0.825 | 0.734 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.4 | 0.718 | 0.671 | 0.825 | 0.74 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.45 | 0.709 | 0.667 | 0.807 | 0.73 |
2016 imagery, 2017 conflict [July–December] | v100 | 0.5 | 0.735 | 0.697 | 0.807 | 0.748 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.3 | 0.762 | 0.691 | 0.95 | 0.8 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.35 | 0.8 | 0.74 | 0.925 | 0.822 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.4 | 0.813 | 0.755 | 0.925 | 0.831 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.45 | 0.787 | 0.745 | 0.875 | 0.805 |
2014 imagery, 2015 conflict [July–December] | v1001 | 0.5 | 0.787 | 0.745 | 0.875 | 0.805 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.3 | 0.727 | 0.696 | 0.821 | 0.753 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.35 | 0.701 | 0.69 | 0.744 | 0.716 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.4 | 0.675 | 0.675 | 0.692 | 0.684 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.45 | 0.701 | 0.711 | 0.692 | 0.701 |
2014 imagery, 2015 conflict [July–December] | v1002 | 0.5 | 0.727 | 0.765 | 0.667 | 0.712 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.3 | 0.696 | 0.674 | 0.775 | 0.721 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.35 | 0.734 | 0.744 | 0.725 | 0.734 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.4 | 0.747 | 0.778 | 0.7 | 0.737 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.45 | 0.734 | 0.771 | 0.675 | 0.72 |
2014 imagery, 2015 conflict [July–December] | v1003 | 0.5 | 0.734 | 0.788 | 0.65 | 0.712 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.3 | 0.716 | 0.673 | 0.825 | 0.742 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.35 | 0.728 | 0.688 | 0.825 | 0.75 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.4 | 0.716 | 0.689 | 0.775 | 0.729 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.45 | 0.691 | 0.683 | 0.7 | 0.691 |
2014 imagery, 2015 conflict [July–December] | v1004 | 0.5 | 0.691 | 0.683 | 0.7 | 0.691 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.3 | 0.753 | 0.72 | 0.9 | 0.8 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.35 | 0.808 | 0.783 | 0.9 | 0.837 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.4 | 0.849 | 0.854 | 0.875 | 0.864 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.45 | 0.849 | 0.872 | 0.85 | 0.861 |
2014 imagery, 2015 conflict [July–December] | v100 | 0.5 | 0.849 | 0.872 | 0.85 | 0.861 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.3 | 0.702 | 0.634 | 0.951 | 0.761 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.35 | 0.717 | 0.657 | 0.902 | 0.76 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.4 | 0.756 | 0.713 | 0.853 | 0.777 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.45 | 0.776 | 0.75 | 0.824 | 0.785 |
2014 imagery, 2015 conflict [January–December] | v1011 | 0.5 | 0.776 | 0.775 | 0.775 | 0.775 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.3 | 0.707 | 0.641 | 0.912 | 0.753 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.35 | 0.721 | 0.659 | 0.892 | 0.758 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.4 | 0.731 | 0.683 | 0.843 | 0.754 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.45 | 0.707 | 0.678 | 0.765 | 0.719 |
2014 imagery, 2015 conflict [January–December] | v1012 | 0.5 | 0.731 | 0.725 | 0.725 | 0.725 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.3 | 0.714 | 0.655 | 0.931 | 0.769 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.35 | 0.714 | 0.664 | 0.892 | 0.762 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.4 | 0.739 | 0.702 | 0.853 | 0.77 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.45 | 0.769 | 0.759 | 0.804 | 0.781 |
2014 imagery, 2015 conflict [January–December] | v1013 | 0.5 | 0.789 | 0.813 | 0.765 | 0.788 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.3 | 0.725 | 0.656 | 0.971 | 0.783 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.35 | 0.745 | 0.678 | 0.951 | 0.792 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.4 | 0.76 | 0.699 | 0.931 | 0.798 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.45 | 0.755 | 0.715 | 0.863 | 0.782 |
2014 imagery, 2015 conflict [January–December] | v1014 | 0.5 | 0.77 | 0.755 | 0.814 | 0.783 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.3 | 0.723 | 0.657 | 0.922 | 0.767 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.35 | 0.733 | 0.669 | 0.912 | 0.772 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.4 | 0.728 | 0.674 | 0.873 | 0.761 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.45 | 0.743 | 0.693 | 0.863 | 0.769 |
2014 imagery, 2015 conflict [January–December] | v101 | 0.5 | 0.723 | 0.706 | 0.755 | 0.73 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.3 | 0.733 | 0.708 | 0.742 | 0.724 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.35 | 0.733 | 0.714 | 0.726 | 0.72 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.4 | 0.74 | 0.726 | 0.726 | 0.726 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.45 | 0.748 | 0.738 | 0.726 | 0.732 |
2014 imagery, 2015 conflict [January–June] | v1001 | 0.5 | 0.756 | 0.75 | 0.726 | 0.738 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.3 | 0.694 | 0.662 | 0.79 | 0.721 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.35 | 0.718 | 0.69 | 0.79 | 0.737 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.4 | 0.726 | 0.7 | 0.79 | 0.742 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.45 | 0.75 | 0.738 | 0.774 | 0.756 |
2014 imagery, 2015 conflict [January–June] | v1002 | 0.5 | 0.75 | 0.746 | 0.758 | 0.752 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.3 | 0.718 | 0.689 | 0.81 | 0.745 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.35 | 0.702 | 0.681 | 0.778 | 0.726 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.4 | 0.718 | 0.706 | 0.762 | 0.733 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.45 | 0.718 | 0.712 | 0.746 | 0.729 |
2014 imagery, 2015 conflict [January–June] | v1003 | 0.5 | 0.71 | 0.708 | 0.73 | 0.719 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.3 | 0.682 | 0.678 | 0.645 | 0.661 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.35 | 0.682 | 0.684 | 0.629 | 0.655 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.4 | 0.698 | 0.725 | 0.597 | 0.655 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.45 | 0.698 | 0.735 | 0.581 | 0.649 |
2014 imagery, 2015 conflict [January–June] | v1004 | 0.5 | 0.721 | 0.795 | 0.565 | 0.66 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.3 | 0.686 | 0.647 | 0.887 | 0.748 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.35 | 0.695 | 0.659 | 0.871 | 0.75 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.4 | 0.72 | 0.688 | 0.855 | 0.763 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.45 | 0.72 | 0.704 | 0.806 | 0.752 |
2014 imagery, 2015 conflict [January–June] | v100 | 0.5 | 0.763 | 0.774 | 0.774 | 0.774 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.3 | 0.603 | 0.583 | 0.708 | 0.64 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.35 | 0.603 | 0.592 | 0.652 | 0.62 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.4 | 0.615 | 0.611 | 0.618 | 0.615 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.45 | 0.609 | 0.617 | 0.562 | 0.588 |
2018 imagery, 2019 conflict [January–June] | v1001 | 0.5 | 0.637 | 0.662 | 0.551 | 0.601 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.3 | 0.674 | 0.64 | 0.798 | 0.71 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.35 | 0.657 | 0.63 | 0.764 | 0.69 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.4 | 0.652 | 0.634 | 0.719 | 0.674 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.45 | 0.652 | 0.642 | 0.685 | 0.663 |
2018 imagery, 2019 conflict [January–June] | v1002 | 0.5 | 0.68 | 0.686 | 0.663 | 0.674 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.3 | 0.607 | 0.573 | 0.843 | 0.682 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.35 | 0.624 | 0.587 | 0.831 | 0.688 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.4 | 0.652 | 0.619 | 0.787 | 0.693 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.45 | 0.663 | 0.636 | 0.764 | 0.694 |
2018 imagery, 2019 conflict [January–June] | v1003 | 0.5 | 0.657 | 0.635 | 0.742 | 0.684 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.3 | 0.596 | 0.557 | 0.867 | 0.678 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.35 | 0.612 | 0.573 | 0.833 | 0.679 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.4 | 0.617 | 0.579 | 0.811 | 0.676 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.45 | 0.612 | 0.583 | 0.744 | 0.654 |
2018 imagery, 2019 conflict [January–June] | v1004 | 0.5 | 0.628 | 0.604 | 0.711 | 0.653 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.3 | 0.661 | 0.614 | 0.876 | 0.722 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.35 | 0.689 | 0.649 | 0.831 | 0.729 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.4 | 0.695 | 0.661 | 0.809 | 0.727 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.45 | 0.689 | 0.663 | 0.775 | 0.715 |
2018 imagery, 2019 conflict [January–June] | v100 | 0.5 | 0.718 | 0.701 | 0.764 | 0.731 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.3 | 0.623 | 0.598 | 0.743 | 0.663 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.35 | 0.612 | 0.595 | 0.694 | 0.641 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.4 | 0.612 | 0.6 | 0.667 | 0.632 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.45 | 0.619 | 0.616 | 0.625 | 0.621 |
2018 imagery, 2019 conflict [January–December] | v1011 | 0.5 | 0.644 | 0.652 | 0.611 | 0.631 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.3 | 0.608 | 0.565 | 0.972 | 0.714 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.35 | 0.643 | 0.591 | 0.951 | 0.729 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.4 | 0.703 | 0.644 | 0.917 | 0.756 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.45 | 0.745 | 0.694 | 0.882 | 0.777 |
2018 imagery, 2019 conflict [January–December] | v1012 | 0.5 | 0.72 | 0.719 | 0.729 | 0.724 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.3 | 0.612 | 0.559 | 0.917 | 0.695 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.35 | 0.639 | 0.581 | 0.896 | 0.705 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.4 | 0.642 | 0.591 | 0.833 | 0.692 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.45 | 0.656 | 0.613 | 0.771 | 0.683 |
2018 imagery, 2019 conflict [January–December] | v1013 | 0.5 | 0.676 | 0.646 | 0.722 | 0.682 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.3 | 0.622 | 0.585 | 0.855 | 0.695 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.35 | 0.615 | 0.584 | 0.814 | 0.68 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.4 | 0.618 | 0.592 | 0.779 | 0.673 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.45 | 0.635 | 0.622 | 0.703 | 0.66 |
2018 imagery, 2019 conflict [January–December] | v1014 | 0.5 | 0.635 | 0.639 | 0.634 | 0.637 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.3 | 0.644 | 0.588 | 0.951 | 0.727 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.35 | 0.682 | 0.621 | 0.924 | 0.743 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.4 | 0.706 | 0.651 | 0.882 | 0.749 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.45 | 0.716 | 0.672 | 0.84 | 0.747 |
2018 imagery, 2019 conflict [January–December] | v101 | 0.5 | 0.699 | 0.677 | 0.757 | 0.715 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.3 | 0.624 | 0.574 | 0.957 | 0.718 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.35 | 0.632 | 0.582 | 0.94 | 0.719 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.4 | 0.662 | 0.608 | 0.915 | 0.73 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.45 | 0.697 | 0.646 | 0.872 | 0.742 |
2016 imagery, 2017 conflict [January–December] | v1011 | 0.5 | 0.731 | 0.696 | 0.821 | 0.753 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.3 | 0.746 | 0.699 | 0.847 | 0.766 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.35 | 0.742 | 0.715 | 0.788 | 0.75 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.4 | 0.758 | 0.742 | 0.78 | 0.76 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.45 | 0.771 | 0.769 | 0.763 | 0.766 |
2016 imagery, 2017 conflict [January–December] | v1012 | 0.5 | 0.771 | 0.784 | 0.737 | 0.76 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.3 | 0.734 | 0.688 | 0.829 | 0.752 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.35 | 0.743 | 0.707 | 0.803 | 0.752 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.4 | 0.763 | 0.738 | 0.795 | 0.765 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.45 | 0.772 | 0.763 | 0.769 | 0.766 |
2016 imagery, 2017 conflict [January–December] | v1013 | 0.5 | 0.78 | 0.776 | 0.769 | 0.773 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.3 | 0.727 | 0.691 | 0.803 | 0.743 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.35 | 0.735 | 0.701 | 0.803 | 0.749 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.4 | 0.739 | 0.717 | 0.778 | 0.746 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.45 | 0.735 | 0.725 | 0.744 | 0.734 |
2016 imagery, 2017 conflict [January–December] | v1014 | 0.5 | 0.752 | 0.764 | 0.718 | 0.74 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.3 | 0.733 | 0.688 | 0.846 | 0.759 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.35 | 0.725 | 0.686 | 0.821 | 0.747 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.4 | 0.733 | 0.696 | 0.821 | 0.753 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.45 | 0.737 | 0.71 | 0.795 | 0.75 |
2016 imagery, 2017 conflict [January–December] | v101 | 0.5 | 0.763 | 0.748 | 0.786 | 0.767 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.3 | 0.609 | 0.581 | 0.655 | 0.615 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.35 | 0.643 | 0.621 | 0.655 | 0.637 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.4 | 0.643 | 0.625 | 0.636 | 0.631 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.45 | 0.652 | 0.647 | 0.6 | 0.623 |
2018 imagery, 2019 conflict [July–December] | v1001 | 0.5 | 0.661 | 0.674 | 0.564 | 0.614 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.3 | 0.6 | 0.594 | 0.704 | 0.644 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.35 | 0.6 | 0.597 | 0.685 | 0.638 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.4 | 0.6 | 0.607 | 0.63 | 0.618 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.45 | 0.629 | 0.642 | 0.63 | 0.636 |
2018 imagery, 2019 conflict [July–December] | v1002 | 0.5 | 0.638 | 0.667 | 0.593 | 0.627 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.3 | 0.689 | 0.683 | 0.782 | 0.729 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.35 | 0.699 | 0.7 | 0.764 | 0.73 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.4 | 0.68 | 0.69 | 0.727 | 0.708 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.45 | 0.65 | 0.686 | 0.636 | 0.66 |
2018 imagery, 2019 conflict [July–December] | v1003 | 0.5 | 0.68 | 0.75 | 0.6 | 0.667 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.3 | 0.552 | 0.518 | 0.8 | 0.629 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.35 | 0.595 | 0.551 | 0.782 | 0.647 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.4 | 0.612 | 0.569 | 0.745 | 0.646 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.45 | 0.655 | 0.623 | 0.691 | 0.655 |
2018 imagery, 2019 conflict [July–December] | v1004 | 0.5 | 0.647 | 0.646 | 0.564 | 0.602 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.3 | 0.624 | 0.609 | 0.709 | 0.655 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.35 | 0.633 | 0.627 | 0.673 | 0.649 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.4 | 0.633 | 0.632 | 0.655 | 0.643 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.45 | 0.633 | 0.636 | 0.636 | 0.636 |
2018 imagery, 2019 conflict [July–December] | v100 | 0.5 | 0.642 | 0.674 | 0.564 | 0.614 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.3 | 0.63 | 0.608 | 0.75 | 0.672 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.35 | 0.655 | 0.638 | 0.733 | 0.682 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.4 | 0.655 | 0.646 | 0.7 | 0.672 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.45 | 0.681 | 0.677 | 0.7 | 0.689 |
2016 imagery, 2017 conflict [January–June] | v1001 | 0.5 | 0.723 | 0.745 | 0.683 | 0.713 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.3 | 0.702 | 0.636 | 0.933 | 0.757 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.35 | 0.711 | 0.644 | 0.933 | 0.762 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.4 | 0.736 | 0.679 | 0.883 | 0.768 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.45 | 0.76 | 0.707 | 0.883 | 0.785 |
2016 imagery, 2017 conflict [January–June] | v1002 | 0.5 | 0.76 | 0.707 | 0.883 | 0.785 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.3 | 0.689 | 0.649 | 0.833 | 0.73 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.35 | 0.681 | 0.662 | 0.75 | 0.703 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.4 | 0.697 | 0.694 | 0.717 | 0.705 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.45 | 0.739 | 0.754 | 0.717 | 0.735 |
2016 imagery, 2017 conflict [January–June] | v1003 | 0.5 | 0.765 | 0.796 | 0.717 | 0.754 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.3 | 0.672 | 0.63 | 0.85 | 0.723 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.35 | 0.655 | 0.627 | 0.783 | 0.696 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.4 | 0.681 | 0.657 | 0.767 | 0.708 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.45 | 0.689 | 0.667 | 0.767 | 0.713 |
2016 imagery, 2017 conflict [January–June] | v1004 | 0.5 | 0.697 | 0.676 | 0.767 | 0.719 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.3 | 0.694 | 0.649 | 0.833 | 0.73 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.35 | 0.702 | 0.662 | 0.817 | 0.731 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.4 | 0.694 | 0.658 | 0.8 | 0.722 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.45 | 0.736 | 0.712 | 0.783 | 0.746 |
2016 imagery, 2017 conflict [January–June] | v100 | 0.5 | 0.744 | 0.723 | 0.783 | 0.752 |
Appendix A.3. ROC Curves
References
- Herbert, S.; Husaini, S. Conflict, Instability and Resilience in Nigeria. Rapid Literature Review; Technical Report; University of Birmingham: Birmingham, UK, 2018. [Google Scholar]
- The Armed Conflict Location & Event Data Project. ACLED Data Dashboard. 2019. Available online: https://acleddata.com/data/ (accessed on 1 July 2024).
- Raleigh, C.; Linke, A.; Hegre, H.; Karlsen, J. Introducing ACLED: An Armed Conflict Location and Event Dataset: Special Data Feature. J. Peace Res. 2010, 47, 651–660. [Google Scholar] [CrossRef]
- Usman, M.; Nichol, J.E. Changes in agricultural and grazing land, and insights for mitigating farmer-herder conflict in West Africa. Landsc. Urban Plan. 2022, 222, 104383. [Google Scholar] [CrossRef]
- WorldPop; CIESIN. Global High Resolution Population Denominators Project. 2018. Available online: https://hub.worldpop.org/doi/10.5258/SOTON/WP00647 (accessed on 1 July 2024).
- European Space Agency. ESA Land Cover. 2017. Available online: https://www.esa-landcover-cci.org/ (accessed on 1 July 2024).
- Matsuura, K.; Willmott, C.J. Terrestrial Precipitation: 1900–2014 Gridded Monthly Time Series. 2015. Available online: https://climate.geog.udel.edu/ (accessed on 1 July 2024).
- Goodman, S.; BenYishay, A.; Lv, Z.; Runfola, D. GeoQuery: Integrating HPC systems and public web-based geospatial data tools. Comput. Geosci. 2019, 122, 103–112. [Google Scholar] [CrossRef]
- Burke, M.; Driscoll, A.; Lobell, D.B.; Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 2021, 371, 6535. [Google Scholar] [CrossRef]
- Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Albelwi, S.; Mahmood, A. A Framework for Designing the Architectures of Deep Convolutional Neural Networks. Entropy 2017, 19, 242. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [Google Scholar] [CrossRef]
- Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1349–1362. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.Q. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, S.; Liu, C.L.; Pan, C.H. Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797–1801. [Google Scholar] [CrossRef]
- Vakalopoulou, M.; Karantzalos, K.; Komodakis, N.; Paragios, N. Building detection in very high resolution multispectral data with deep learning features. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 1873–1876. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Marmanis, D.; Datcu, M.; Esch, T.; Stilla, U. Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 105–109. [Google Scholar] [CrossRef]
- Chi, G.; Fang, H.; Chatterjee, S.; Blumenstock, J.E. Microestimates of wealth for all low- and middle-income countries. Proc. Natl. Acad. Sci. USA 2022, 119, e2113658119. [Google Scholar] [CrossRef]
- Yeh, C.; Perez, A.; Driscoll, A.; Azzari, G.; Tang, Z.; Lobell, D.; Ermon, S.; Burke, M. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat. Commun. 2020, 11, 2583. [Google Scholar] [CrossRef]
- Babenko, B.; Hersh, J.; Newhouse, D.; Ramakrishnan, A.; Swartz, T. Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, with an Application in Mexico. arXiv 2017, arXiv:1711.06323. [Google Scholar]
- Subash, S.P.; Kumar, R.R.; Aditya, K.S. Satellite data and machine learning tools for predicting poverty in rural India. Agric. Econ. Res. Rev. 2018, 31, 231. [Google Scholar] [CrossRef]
- Engstrom, R.; Hersh, J.S.; Newhouse, D.L. Poverty from Space: Using High-Resolution Satellite Imagery for Estimating Economic Well-Being; Technical Report; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Oshri, B.; Hu, A.; Adelson, P.; Chen, X.; Dupas, P.; Weinstein, J.; Burke, M.; Lobell, D.; Ermon, S. Infrastructure Quality Assessment in Africa Using Satellite Imagery and Deep Learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, London, UK, 19–23 August 2018; ACM: New York, NY, USA, 2018; pp. 616–625. [Google Scholar] [CrossRef]
- Brewer, E.; Lin, J.; Kemper, P.; Hennin, J.; Runfola, D. Predicting road quality using high resolution satellite imagery: A transfer learning approach. PLoS ONE 2021, 16, e0253370. [Google Scholar] [CrossRef]
- Lv, Z.; Nunez, K.; Brewer, E.; Runfola, D. pyShore: A deep learning toolkit for shoreline structure mapping with high-resolution orthographic imagery and convolutional neural networks. Comput. Geosci. 2023, 171, 105296. [Google Scholar] [CrossRef]
- Lobell, D.B.; Di Tommaso, S.; You, C.; Djima, I.Y.; Burke, M.; Kilic, T. Sight for sorghums: Comparisons of satellite-and ground-based sorghum yield estimates in Mali. Remote Sens. 2020, 12, 100. [Google Scholar] [CrossRef]
- Runfola, D.; Stefanidis, A.; Baier, H. Using satellite data and deep learning to estimate educational outcomes in data-sparse environments. Remote. Sens. Lett. 2021, 13, 87–97. [Google Scholar] [CrossRef]
- Head, A.; Manguin, M.; Tran, N.; Blumenstock, J.E. Can Human Development Be Measured with Satellite Imagery? In Proceedings of the Ninth International Conference on Information and Communication Technologies and Development, ICTD ’17, Lahore, Pakistan, 16–19 November 2017; ACM: New York, NY, USA, 2017; pp. 8:1–8:11. [Google Scholar] [CrossRef]
- Hu, W.; Novosad, P.; Burke, M.; Patel, J.H.; Asher, S.; Lobell, D.; Robert, Z.A.; Tang, Z.; Ermon, S. Mapping missing population in rural India: A deep learning approach with satellite imagery. In Proceedings of the AIES 2019—2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019; Association for Computing Machinery, Inc.: New York, NY, USA, 2019; pp. 353–359. [Google Scholar] [CrossRef]
- Runfola, D.; Baier, H.; Mills, L.; Naughton-Rockwell, M.; Stefanidis, A. Deep learning fusion of satellite and social information to estimate human migratory flows. Trans. GIS 2022, 26, 2495–2518. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.; BenYishay, A.; Runfola, D. A convolutional neural network approach to predict non-permissive environments from moderate-resolution imagery. Trans. GIS 2020, 25, 674–691. [Google Scholar] [CrossRef]
- Runfola, D.; Stefanidis, A.; Lv, Z.; O’Brien, J.; Baier, H. A multi-glimpse deep learning architecture to estimate socioeconomic census metrics in the context of extreme scope variance. Int. J. Geogr. Inf. Sci. 2024, 38, 726–750. [Google Scholar] [CrossRef]
- Buntaine, M.T.; Hamilton, S.E.; Millones, M. Titling community land to prevent deforestation: An evaluation of a best-case program in Morona-Santiago, Ecuador. Glob. Environ. Chang. 2015, 33, 32–43. [Google Scholar] [CrossRef]
- BenYishay, A.; Runfola, D.; Trichler, R.; Dolan, C.; Goodman, S.; Parks, B.; Tanner, J.; Heuser, S.; Batra, G.; Anand, A. A Primer on Geospatial Impact Evaluation Methods, Tools, and Applications; AidData Working Paper #44; AidData at William & Mary: Williamsburg, VA, USA, 2017. [Google Scholar]
- Runfola, D.; BenYishay, A.; Tanner, J.; Buchanan, G.; Nagol, J.; Leu, M.; Goodman, S.; Trichler, R.; Marty, R. A Top-Down Approach to Estimating Spatially Heterogeneous Impacts of Development Aid on Vegetative Carbon Sequestration. Sustainability 2017, 9, 409. [Google Scholar] [CrossRef]
- Marty, R.; Goodman, S.; LeFew, M.; Dolan, C.; BenYishay, A.; Runfola, D. Assessing the causal impact of Chinese aid on vegetative land cover in Burundi and Rwanda under conditions of spatial imprecision. Dev. Eng. 2019, 4, 100038. [Google Scholar] [CrossRef]
- Runfola, D.; Batra, G.; Anand, A.; Way, A.; Goodman, S. Exploring the Socioeconomic Co-benefits of Global Environment Facility Projects in Uganda Using a Quasi-Experimental Geospatial Interpolation (QGI) Approach. Sustainability 2020, 12, 3225. [Google Scholar] [CrossRef]
- BenYishay, A.; Sayers, R.; Singh, K.; Goodman, S.; Walker, M.; Traore, S.; Rauschenbach, M.; Noltze, M. Irrigation strengthens climate resilience: Long-term evidence from Mali using satellites and surveys. PNAS Nexus 2024, 3, pgae022. [Google Scholar] [CrossRef]
- Bansal, C.; Jain, A.; Barwaria, P.; Choudhary, A.; Singh, A.; Gupta, A.; Seth, A. Temporal prediction of socio-economic indicators using satellite imagery. In Proceedings of the CoDS COMAD 2020: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, Hyderabad, India, 5–7 January 2020; ACM International Conference Proceeding Series. pp. 73–81. [Google Scholar] [CrossRef]
- Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review. J. Imaging 2019, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Gaetano, R.; Ienco, D. TiSeLaC: Time Series Land Cover Classification Challenge Dataset; UMR TETIS: Montpellier, France, 2017. [Google Scholar]
- Martino, T.D. Time Series Land Cover Challenge: A Deep Learning Perspective. 2020. Available online: https://towardsdatascience.com/time-series-land-cover-challenge-a-deep-learning-perspective-6a953368a2bd (accessed on 1 July 2024).
- Mauro, N.D.; Vergari, A.; Basile, T.; Ventola, F.; Esposito, F. End-to-end Learning of Deep Spatio-temporal Representations for Satellite Image Time Series Classification. In Proceedings of the DC@PKDD/ECML 2017, Skopje, Macedonia, 18–22 September 2017. [Google Scholar]
- Garnot, V.S.F.; Landrieu, L.; Giordano, S.; Chehata, N. Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 12325–12334. [Google Scholar]
- Hegre, H.; Metternich, N.W.; Nygård, H.M.; Wucherpfennig, J. Introduction: Forecasting in peace research. J. Peace Res. 2017, 54, 113–124. [Google Scholar] [CrossRef]
- Cederman, L.E.; Weidmann, N.B. Predicting armed conflict: Time to adjust our expectations? Science 2017, 355, 474–476. [Google Scholar] [CrossRef]
- Bazzi, S.; Blair, R.A.; Blattman, C.; Dube, O.; Gudgeon, M.; Merton Peck, R. The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia; Technical Report; The National Bureau of Economic Research: Cambridge, MA, USA, 2019. [Google Scholar]
- Weidmann, N.B.; Ward, M.D. Predicting Conflict in Space and Time. J. Confl. Resolut. 2010, 54, 883–901. [Google Scholar] [CrossRef]
- Mueller, H.; Rauh, C. The Hard Problem of Prediction for Conflict Prevention. J. Eur. Econ. Assoc. 2022, 20, 2440–2467. [Google Scholar] [CrossRef]
- Hegre, H.; Allansson, M.; Basedau, M.; Colaresi, M.; Croicu, M.; Fjelde, H.; Hoyles, F.; Hultman, L.; Högbladh, S.; Jansen, R.; et al. ViEWS: A political violence early-warning system. J. Peace Res. 2019, 56, 155–174. [Google Scholar] [CrossRef]
- Vesco, P.; Hegre, H.; Colaresi, M.; Jansen, R.B.; Lo, A.; Reisch, G.; Weidmann, N.B. United they stand: Findings from an escalation prediction competition. Int. Interact. 2022, 48, 860–896. [Google Scholar] [CrossRef]
- Radford, B.J. High resolution conflict forecasting with spatial convolutions and long short-term memory. Int. Interact. 2022, 48, 739–758. [Google Scholar] [CrossRef]
- Brandt, P.T.; D’Orazio, V.; Khan, L.; Li, Y.F.; Osorio, J.; Sianan, M. Conflict forecasting with event data and spatio-temporal graph convolutional networks. Int. Interact. 2022, 48, 800–822. [Google Scholar] [CrossRef]
- D’Orazio, V.; Lin, Y. Forecasting conflict in Africa with automated machine learning systems. Int. Interact. 2022, 48, 714–738. [Google Scholar] [CrossRef]
- Racek, D.; Thurner, P.W.; Davidson, B.I.; Zhu, X.X.; Kauermann, G. Conflict forecasting using remote sensing data: An application to the Syrian civil war. Int. J. Forecast. 2024, 40, 373–391. [Google Scholar] [CrossRef]
- United States Geological Survey. Landsat 7; United States Geological Survey: Reston, VA, USA, 2018.
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- United States Geological Survey. USGS EarthExplorer; United States Geological Survey: Reston, VA, USA, 2017.
- United States Geological Survey. USGS Landsat Bulk Download; United States Geological Survey: Reston, VA, USA, 2017.
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the Computer Vision and Pattern Recognition, CVPR 2009, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Weiss, K.R.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; pp. 3320–3328. [Google Scholar]
- Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 512–519. [Google Scholar]
- Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1725–1732. [Google Scholar]
- Hoo-Chang, S.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 2016, 35, 1285. [Google Scholar]
- Lv, Z.; Nunez, K.; Brewer, E.; Runfola, D. Mapping the tidal marshes of coastal Virginia: A hierarchical transfer learning approach. GISci. Remote Sens. 2024, 61, 2287291. [Google Scholar] [CrossRef]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Eck, K. In data we trust? A comparison of UCDP GED and ACLED conflict events datasets. Coop. Confl. 2012, 47, 124–141. [Google Scholar] [CrossRef]
- Li, H.; Fu, K.; Xu, G.; Zheng, X.; Ren, W.; Sun, X. Scene classification in remote sensing images using a two-stage neural network ensemble model. Remote Sens. Lett. 2017, 8, 557–566. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 2018, 140, 133–144. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Wang, Y.; Li, Z.; Jia, Y.; Gui, G. Deep Learning-Based Classification Methods for Remote Sensing Images in Urban Built-Up Areas. IEEE Access 2019, 7, 36274–36284. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 5987–5995. [Google Scholar] [CrossRef]
- Flusser, J.; Suk, T. Pattern recognition by affine moment invariants. Pattern Recognit. 1993, 26, 167–174. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the ICML’10: Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
Bands | Wavelength (Micrometers) | Resolution (Meters) |
---|---|---|
Band 1—Coastal aerosol | 0.433–0.453 | 30 |
Band 2—Blue | 0.450–0.515 | 30 |
Band 3—Green | 0.525–0.600 | 30 |
Band 4—Red | 0.630–0.680 | 30 |
Band 5—Near Infrared (NIR) | 0.845–0.885 | 30 |
Band 6—Shortwave Infrared (SWIR) 1 | 1.560–1.660 | 30 |
Band 7—Shortwave Infrared (SWIR) 2 | 2.100–2.300 | 30 |
Band 8—Panchromatic | 0.500–0.680 | 15 |
Band 9—Cirrus | 1.360–1.390 | 30 |
Band 10—Thermal Infrared (TIRS) 1 | 10.60–11.20 | 30 * |
Band 11—Thermal Infrared (TIRS) 2 | 11.50–12.50 | 30 * |
Imagery Window | Conflict Window | Conflict Event Count (Training/Validation Splits) |
---|---|---|
2014 all | 2015 all | 1673 (1422/251) |
2014 January–June | 2015 January–June | 997 (847/150) |
2014 July–December | 2015 July–December | 676 (575/101) |
2016 all | 2017 all | 1644 (1397/247) |
2016 January–June | 2017 January–June | 817 (694/123) |
2016 July–December | 2017 July–December | 827 (703/124) |
2018 all | 2019 all | 2218 (1885/333) |
2018 January–June | 2019 January–June | 1214 (1032/182) |
2018 July–December | 2019 July–December | 1004 (853/151) |
Parameter | Values |
---|---|
Network | Resnet18, Resnet50 |
Learning Rate | 0.0001, 0.00001 |
Gamma | 0.25, 0.5 |
Step Size | 10, 15 |
Actual | Predicted | Classification |
---|---|---|
Positive | Positive | true positive (tp) |
Positive | Negative | false negative (fp) |
Negative | Positive | false positive (fn) |
Negative | Negative | true negative (tn) |
Category | Proximity Threshold | ||||
---|---|---|---|---|---|
Year | 1 km | 5 km | 7 km | 15 km | |
Mean % Fatal Correct | 2015 | 0.62 | 0.67 | 0.71 | 0.81 |
2017 | 0.67 | 0.72 | 0.74 | 0.83 | |
2019 | 0.52 | 0.62 | 0.67 | 0.82 | |
Mean % Non-Fatal Correct | 2015 | 0.48 | 0.40 | 0.38 | 0.29 |
2017 | 0.36 | 0.29 | 0.27 | 0.21 | |
2019 | 0.40 | 0.34 | 0.30 | 0.16 |
Imagery Temporal | Conflict Temporal | AUC ROC |
---|---|---|
2014 January–December | 2015 January–December | 0.815 |
2014 January–June | 2015 January–June | 0.790 |
2014 July–December | 2015 July–December | 0.796 |
2016 January–December | 2017 January–December | 0.807 |
2016 January–June | 2017 January–June | 0.782 |
2016 July–December | 2017 July–December | 0.797 |
2018 January–December | 2019 January–December | 0.722 |
2018 January–June | 2019 January–June | 0.681 |
2018 July–December | 2019 July–December | 0.678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodman, S.; BenYishay, A.; Runfola, D. Spatiotemporal Prediction of Conflict Fatality Risk Using Convolutional Neural Networks and Satellite Imagery. Remote Sens. 2024, 16, 3411. https://doi.org/10.3390/rs16183411
Goodman S, BenYishay A, Runfola D. Spatiotemporal Prediction of Conflict Fatality Risk Using Convolutional Neural Networks and Satellite Imagery. Remote Sensing. 2024; 16(18):3411. https://doi.org/10.3390/rs16183411
Chicago/Turabian StyleGoodman, Seth, Ariel BenYishay, and Daniel Runfola. 2024. "Spatiotemporal Prediction of Conflict Fatality Risk Using Convolutional Neural Networks and Satellite Imagery" Remote Sensing 16, no. 18: 3411. https://doi.org/10.3390/rs16183411
APA StyleGoodman, S., BenYishay, A., & Runfola, D. (2024). Spatiotemporal Prediction of Conflict Fatality Risk Using Convolutional Neural Networks and Satellite Imagery. Remote Sensing, 16(18), 3411. https://doi.org/10.3390/rs16183411