Doppler-Spread Space Target Detection Based on Overlapping Group Shrinkage and Order Statistics
Abstract
:1. Introduction
- (1)
- An interval-adaptive OGS-based denoising algorithm is developed for Doppler-spread line spectra with equidistant sparsity, which performs well in restoring the Doppler cells occupied by line spectra at low SNRs;
- (2)
- A GLRT based on the order statistics of a denoised Doppler sequence is proposed for target detection, and an analytical expression for the false alarm probability with any combination in the index set is derived.
2. Signal Model
3. Denoising Based on Overlapping Group Shrinkage
3.1. Overlapping Group Shrinkage
3.2. Denoising of Line Spectra with Equidistant Sparsity
3.3. Interval-Adaptive Steps
Algorithm 1 OGS-based interval-adaptive denoising algorithm |
Input: The noisy observation vector ; regularization parameter ; |
the penalty function ; prior information of the interval ; |
Pre-processing with Equation (10); |
Initialization: ; |
Procedure: |
For each do |
For each do |
Compute with Equation (8); |
; |
Sort in the ascending order; |
Estimate interval utilizing Equation (22); |
End for |
Update weight sequence with Estimated interval; |
Compute with Equation (18); |
Iterate using Equation (20); |
End for |
Output: . |
3.4. Non-Integer Period Case
4. OGSos-GLRT Detector
4.1. The Proposed Detector
4.2. False Alarm Probability
5. Simulations
5.1. Simulation Parameters
5.2. Effect of Regularization Parameter
5.3. Detection Performance for Target Models
5.4. Effect of Collapsing Loss
5.5. Effect of TOA Period
5.6. Detection Performance for Numbers of Line Spectra
5.7. Detection Performance in Mismatch Cases
5.8. Modified OGSos-GLRT
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TOA | Target observation attitude |
CPI | Coherent processing interval |
SNR | Signal-to-noise ratio |
GLRT | Generalized likelihood ratio test |
ENLS | Estimated number of line spectra |
OGS | Overlapping group shrinkage |
SSA | Space situational awareness |
RM | Range migration |
DFM | Doppler frequency migration |
TFD | Time–frequency distribution |
HRRP | High-resolution range profile |
CFAR | Constant false alarm rate |
SDD-GLRT | Scatterer density-dependent GLRT |
OS-GLRT | Order statistics GLRT |
ASCE-GLRT | Adaptive scatterers estimation GLRT |
ASCE-GLRT | Adaptive Doppler steering matrix estimation GLRT |
OGSos-GLRT | Overlapping group shrinkage and order statistics GLRT |
MF-GLRT | Match filter GLRT |
NLSD-GLRT | Non-line spectra-dependent GLRT |
Appendix A
- is continuous on ;
- is even;
- has a unit slope at zero;
- has a second derivative with a lower bound of on ;
- increases monotonically and is concave on the positive x-axis;
- equals the absolute value function when .
Appendix B
References
- Lin, B.; Wang, J.; Wang, H.; Zhong, L.; Yang, X.; Zhang, X. Small Space Target Detection Based on a Convolutional Neural Network and Guidance Information. Aerospace 2023, 10, 426. [Google Scholar] [CrossRef]
- Perry, R.; DiPietro, R.; Fante, R. SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 188–200. [Google Scholar] [CrossRef]
- Kirkland, D. Imaging moving targets using the second-order keystone transform. IET Radar Sonar Navig. 2011, 5, 902–910. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Peng, Y.N.; Xia, X.G. Radon-Fourier Transform for Radar Target Detection, I: Generalized Doppler Filter Bank. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1186–1202. [Google Scholar] [CrossRef]
- Kong, L.; Li, X.; Cui, G.; Yi, W.; Yang, Y. Coherent Integration Algorithm for a Maneuvering Target With High-Order Range Migration. IEEE Trans. Signal Process. 2015, 63, 4474–4486. [Google Scholar] [CrossRef]
- Li, X.; Cui, G.; Kong, L.; Yi, W. Fast Non-Searching Method for Maneuvering Target Detection and Motion Parameters Estimation. IEEE Trans. Signal Process. 2016, 64, 2232–2244. [Google Scholar] [CrossRef]
- Huang, P.; Liao, G.; Yang, Z.; Xia, X.G.; Ma, J.T.; Ma, J. Long-Time Coherent Integration for Weak Maneuvering Target Detection and High-Order Motion Parameter Estimation Based on Keystone Transform. IEEE Trans. Signal Process. 2016, 64, 4013–4026. [Google Scholar] [CrossRef]
- Li, X.; Cui, G.; Yi, W.; Kong, L. Sequence-Reversing Transform-Based Coherent Integration for High-Speed Target Detection. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1573–1580. [Google Scholar] [CrossRef]
- Huang, P.; Xia, X.G.; Liao, G.; Yang, Z.; Zhang, Y. Long-Time Coherent Integration Algorithm for Radar Maneuvering Weak Target With Acceleration Rate. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3528–3542. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, T.; Zhang, L. Longtime Coherent Integration Algorithm for High-Speed Maneuvering Target Detection Using Space-Based Bistatic Radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5100216. [Google Scholar] [CrossRef]
- Uno, K.; Matsuoka, T.; Uchida, A.; Yoshida, K. Structure from Motion-based Motion Estimation and 3D Reconstruction of Unknown Shaped Space Debris. arXiv 2024, arXiv:2408.01035. [Google Scholar]
- Serrano, A.; Kobsa, A.; Uysal, F.; Cerutti-Maori, D.; Ghio, S.; Kintz, A.; Morrison, R.L., Jr.; Welch, S.; van Dorp, P.; Hogan, G.; et al. Long baseline bistatic radar imaging of tumbling space objects for enhancing space domain awareness. IET Radar Sonar Navig. 2024, 18, 598–619. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Yeh, C.; Lu, X. Precession Parameter Estimation From Wideband Measurements for 3-D ISAR Imaging of Cone-Shaped Targets. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4501305. [Google Scholar] [CrossRef]
- Lin, L.; Sun, G.; Cheng, Z.; He, Z. Long-Time Coherent Integration for Maneuvering Target Detection Based on ITRT-MRFT. IEEE Sens. J. 2020, 20, 3718–3731. [Google Scholar] [CrossRef]
- Van Der Spek, G.A. Detection of a Distributed Target. IEEE Trans. Aerosp. Electron. Syst. 1971, AES-7, 922–931. [Google Scholar] [CrossRef]
- Hughes, P. A High-Resolution Radar Detection Strategy. IEEE Trans. Aerosp. Electron. Syst. 1983, AES-19, 663–667. [Google Scholar] [CrossRef]
- Dai, F.; Liu, H.; Wu, S. Order-Statistic-Based Detector for Range Spread Target. J. Electron. Inf. Technol. 2009, 31, 2488–2492. [Google Scholar]
- Shui, P.L.; Liu, H.W.; Bao, Z. Range-Spread Target Detection Based on Cross Time-Frequency Distribution Features of Two Adjacent Received Signals. IEEE Trans. Signal Process. 2009, 57, 3733–3745. [Google Scholar] [CrossRef]
- Zuo, L.; Li, M.; Zhang, X.; Zhang, P.; Wu, Y. CFAR Detection of Range-Spread Targets Based on the Time-Frequency Decomposition Feature of Two Adjacent Returned Signals. IEEE Trans. Signal Process. 2013, 61, 6307–6319. [Google Scholar] [CrossRef]
- Shui, P.L.; Xu, S.W.; Liu, H.W. Range-Spread Target Detection using Consecutive HRRPs. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 647–665. [Google Scholar] [CrossRef]
- Yang, X.; Wen, G.; Ma, C.; Hui, B.; Ding, B.; Zhang, Y. CFAR Detection of Moving Range-Spread Target in White Gaussian Noise Using Waveform Contrast. IEEE Geosci. Remote Sens. Lett. 2016, 13, 282–286. [Google Scholar] [CrossRef]
- De Maio, A. Polarimetric adaptive detection of range-distributed targets. IEEE Trans. Signal Process. 2002, 50, 2152–2159. [Google Scholar] [CrossRef]
- Tang, M.; Rong, Y.; Zhou, J.; Li, X.R. Invariant Adaptive Detection of Range-Spread Targets Under Structured Noise Covariance. IEEE Trans. Signal Process. 2017, 65, 3048–3061. [Google Scholar] [CrossRef]
- Sun, S.; Liu, J.; Liu, W.; Jian, T. Robust detection of distributed targets based on Rao test and Wald test. Signal Process. 2021, 180, 107801. [Google Scholar] [CrossRef]
- Chen, X.; Gai, J.; Liang, Z.; Liu, Q.; Long, T. Adaptive Double Threshold Detection Method for Range-Spread Targets. IEEE Signal Process. Lett. 2022, 29, 254–258. [Google Scholar] [CrossRef]
- Gu, X.; Tao, J.; You, H. Double Threshold CFAR Detector of Range-spreadTarget and Its Performance Analysis. J. Electron. Inf. Technol. 2012, 34, 1318–1323. [Google Scholar] [CrossRef]
- Shuai, X.; Kong, L.; Yang, J. Adaptive detection for distributed targets in Gaussian noise with Rao and Wald tests. Sci. China Inf. Sci. 2012, 55, 1290–1300. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Tang, B.; Zheng, J.; Xu, S. Distributed Target Detection Exploiting Persymmetry in Gaussian Clutter. IEEE Trans. Signal Process. 2019, 67, 1022–1033. [Google Scholar] [CrossRef]
- Gerlach, K. Spatially distributed target detection in non-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 926–934. [Google Scholar] [CrossRef]
- He, Y.; Jian, T.; Su, F.; Qu, C.; Gu, X. Novel Range-Spread Target Detectors in Non-Gaussian Clutter. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1312–1328. [Google Scholar] [CrossRef]
- Ren, Z.; Yi, W.; Zhao, W.; Kong, L. Range-Spread Target Detection Based on Adaptive Scattering Centers Estimation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5100414. [Google Scholar] [CrossRef]
- Ren, Z.; Yi, W.; Kong, L.; Farina, A.; Orlando, D. Adaptive Range and Doppler Distributed Target Detection in Non-Gaussian Clutter. IEEE Trans. Signal Process. 2023, 71, 2376–2390. [Google Scholar] [CrossRef]
- Chen, P.Y.; Selesnick, I.W. Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization. IEEE Trans. Signal Process. 2014, 62, 3464–3478. [Google Scholar] [CrossRef]
- Chen, P.Y.; Selesnick, I.W. Translation-invariant shrinkage/thresholding of group sparse signals. Signal Process. 2014, 94, 476–489. [Google Scholar] [CrossRef]
- He, W.; Ding, Y.; Zi, Y.; Selesnick, I.W. Sparsity-based algorithm for detecting faults in rotating machines. Mech. Syst. Signal Process. 2016, 72–73, 46–64. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Ding, W.; Cheng, X.; Meng, Z. A sparsity-enhanced periodic OGS model for weak feature extraction of rolling bearing faults. Mech. Syst. Signal Process. 2022, 169, 108733. [Google Scholar] [CrossRef]
- Wang, Q.; Xing, M.; Lu, G.; Bao, Z. Single Range Matching Filtering for Space Debris Radar Imaging. IEEE Geosci. Remote Sens. Lett. 2007, 4, 576–580. [Google Scholar] [CrossRef]
- Bell, M.; Grubbs, R. JEM modeling and measurement for radar target identification. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 73–87. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, S.; Qiao, B.; Wang, S.; Chen, X. Enhanced Sparse Period-Group Lasso for Bearing Fault Diagnosis. IEEE Trans. Ind. Electron. 2019, 66, 2143–2153. [Google Scholar] [CrossRef]
- David, H.A.; Nagaraja, H.N. Order Statistics, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
Parameters | Values |
---|---|
Regularization parameter | 55 |
Number of pulses | 4000 |
Pulse repetition time | 40 ms |
TOA period | 10 s |
Number of line spectra L | 8 |
Number of Doppler cells N | 640 |
Probability of false alarm | |
Number of Monte Carlo simulations |
Models | Doppler Cells | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
3 | 0.3 | 0.6 | 0.9 | 1 | 1 | 0.9 | 0.6 | 0.3 |
4 | 0.5 | 1 | 0.5 | 0.25 | 0.25 | 0.5 | 1 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, L.; Fu, T.; Chen, D.; Cao, H.; Zhang, S.; Han, J. Doppler-Spread Space Target Detection Based on Overlapping Group Shrinkage and Order Statistics. Remote Sens. 2024, 16, 3413. https://doi.org/10.3390/rs16183413
Bu L, Fu T, Chen D, Cao H, Zhang S, Han J. Doppler-Spread Space Target Detection Based on Overlapping Group Shrinkage and Order Statistics. Remote Sensing. 2024; 16(18):3413. https://doi.org/10.3390/rs16183413
Chicago/Turabian StyleBu, Linsheng, Tuo Fu, Defeng Chen, Huawei Cao, Shuo Zhang, and Jialiang Han. 2024. "Doppler-Spread Space Target Detection Based on Overlapping Group Shrinkage and Order Statistics" Remote Sensing 16, no. 18: 3413. https://doi.org/10.3390/rs16183413
APA StyleBu, L., Fu, T., Chen, D., Cao, H., Zhang, S., & Han, J. (2024). Doppler-Spread Space Target Detection Based on Overlapping Group Shrinkage and Order Statistics. Remote Sensing, 16(18), 3413. https://doi.org/10.3390/rs16183413