Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models
Abstract
:1. Introduction
1.1. Soil Salinity: An Agriculture Threat
1.2. Soil Salinity Monitoring: Traditional vs. Remote Sensing Techniques
1.3. Which Machine-Learning Model Performs the Best?
1.4. Study Objectives
2. Materials
2.1. Study Area
2.2. Reference Soil Salinity Data
2.3. Sentinel-2 Images and Pre-Processing
2.4. Sentinel-1 Images and Pre-Processing
2.5. Digital Elevation Model
2.6. Machine Learning Models
3. Methods
3.1. Elaboration of the Learning Database
3.2. Machine Learning Modelling Set-Up
4. Results
4.1. Features Selection and Importance
4.2. Soil Salinity Estimates Prediction
4.3. Soil Salinity Mapping
5. Discussion
6. Conclusions
- Plowed land soil salinity estimates cannot be retrieved from S1 as the C-band wavelength is inferior to plowed land roughness, thus leading to the saturation of the signal.
- Accurate soil salinity estimates can be retrieved from S2 features alone (R2 > 0.6), but the addition of topography features considerably improve the model’s reliability (R2 > 0.7).
- The most relevant independent variables are the Moisture Saturation Index 2, Normalized Difference Water Index, and Elevation. These variables are related to the identification of water accumulation spots where salt is also expected to accumulate.
- For all ML models, the feature selection process significantly improves the model’s reliability, up to 13.6% in the best case.
- The four ML models reach similar global performance. However, high discrepancy is observed when using the models for the mapping of soil salinity in plowed lands in the studied region.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omuto, C.T.; Vargas, R.R.; El Mobarak, A.M.; Mohamed, N.; Viatkin, K.; Yigini, Y. Mapeo de Suelos Afectados por Salinidad—Manual Técnico; FAO: Rome, Italy, 2021; ISBN 978-92-5-133840-7. [Google Scholar]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Porta, J.; López-Acevedo, M.; Poch, R.M. Edafología: Uso y Protección de Suelos, 4th ed.; Mundi-Prensa: Madrid, Spain, 2019; ISBN 978-84-8476-750-3. [Google Scholar]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef]
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The Global Technical and Economic Potential of Bioenergy from Salt-Affected Soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef]
- Zubieta, R.; Molina-Carpio, J.; Laqui, W.; Sulca, J.; Ilbay, M. Comparative Analysis of Climate Change Impacts on Meteorological, Hydrological, and Agricultural Droughts in the Lake Titicaca Basin. Water 2021, 13, 175. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene Expression Profiling of Plants under Salt Stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Wichelns, D.; Qadir, M. Achieving Sustainable Irrigation Requires Effective Management of Salts, Soil Salinity, and Shallow Groundwater. Agric. Water Manag. 2015, 157, 31–38. [Google Scholar] [CrossRef]
- Kempen, B.; Brus, D.J.; Stoorvogel, J.J.; Heuvelink, G.B.M.; de Vries, F. Efficiency Comparison of Conventional and Digital Soil Mapping for Updating Soil Maps. Soil Sci. Soc. Am. J. 2012, 76, 2097–2115. [Google Scholar] [CrossRef]
- Brus, D.J.; Bogaert, P.; Heuvelink, G.B.M. Bayesian Maximum Entropy Prediction of Soil Categories Using a Traditional Soil Map as Soft Information. Eur. J. Soil Sci. 2008, 59, 166–177. [Google Scholar] [CrossRef]
- Zhu, A.X.; Hudson, B.; Burt, J.; Lubich, K.; Simonson, D. Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic. Soil Sci. Soc. Am. J. 2001, 65, 1463–1472. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Alavipanah, S.K.; Damavandi, A.; Mirzaei, S.; Rezaei, A.; Hamzeh, S.; Matinfar, H.; Teimouri, H.; Javadzarrin, I. Remote Sensing Application in Evaluation of Soil Characteristics in Desert Areas. Nat. Environ. Change 2016, 2, 1–24. [Google Scholar]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global Mapping of Soil Salinity Change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Yan, Y.; Kayem, K.; Hao, Y.; Shi, Z.; Zhang, C.; Peng, J.; Liu, W.; Zuo, Q.; Ji, W.; Li, B. Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors. Remote Sens. 2022, 14, 3020. [Google Scholar] [CrossRef]
- Yahiaoui, I.; Bradaï, A.; Douaoui, A.; Abdennour, M.A. Performance of Random Forest and Buffer Analysis of Sentinel-2 Data for Modelling Soil Salinity in the Lower-Cheliff Plain (Algeria). Int. J. Remote Sens. 2021, 42, 148–171. [Google Scholar] [CrossRef]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil Salinity Analysis of Urmia Lake Basin Using Landsat-8 OLI and Sentinel-2A Based Spectral Indices and Electrical Conductivity Measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- Sirpa-Poma, J.W.; Satgé, F.; Resongles, E.; Pillco-Zolá, R.; Molina-Carpio, J.; Flores Colque, M.G.; Ormachea, M.; Pacheco Mollinedo, P.; Bonnet, M.-P. Towards the Improvement of Soil Salinity Mapping in a Data-Scarce Context Using Sentinel-2 Images in Machine-Learning Models. Sensors 2023, 23, 9328. [Google Scholar] [CrossRef]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Soil Salinity Mapping Using Dual-Polarized SAR Sentinel-1 Imagery. Int. J. Remote Sens. 2019, 40, 237–252. [Google Scholar] [CrossRef]
- Hoa, P.V.; Giang, N.V.; Binh, N.A.; Hai, L.V.H.; Pham, T.-D.; Hasanlou, M.; Tien Bui, D. Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sens. 2019, 11, 128. [Google Scholar] [CrossRef]
- Periasamy, S.; Ravi, K.P.; Tansey, K. Identification of Saline Landscapes from an Integrated SVM Approach from a Novel 3-D Classification Schema Using Sentinel-1 Dual-Polarized SAR Data. Remote Sens. Environ. 2022, 279, 113144. [Google Scholar] [CrossRef]
- Periasamy, S.; Ravi, K.P. A Novel Approach to Quantify Soil Salinity by Simulating the Dielectric Loss of SAR in Three-Dimensional Density Space. Remote Sens. Environ. 2020, 251, 112059. [Google Scholar] [CrossRef]
- Sirpa-Poma, J.W.; Satgé, F.; Pillco Zolá, R.; Resongles, E.; Perez-Flores, M.; Flores Colque, M.G.; Molina-Carpio, J.; Ramos, O.; Bonnet, M.-P. Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano. Sustainability 2024, 16, 6200. [Google Scholar] [CrossRef]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital Mapping of Soil Salinization Based on Sentinel-1 and Sentinel-2 Data Combined with Machine Learning Algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Zhou, W.; Rao, P.; Jat, M.L.; Singh, B.; Poonia, S.; Bijarniya, D.; Kumar, M.; Singh, L.K.; Schulthess, U.; Singh, R.; et al. Using Sentinel-2 to Track Field-Level Tillage Practices at Regional Scales in Smallholder Systems. Remote Sens. 2021, 13, 5108. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X.; Chen, S. Simultaneously Estimating Surface Soil Moisture and Roughness of Bare Soils by Combining Optical and Radar Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102345. [Google Scholar] [CrossRef]
- Ebrahimzadeh, G.; Yaghmaeian Mahabadi, N.; Bayat, H.; MatinFar, H. Estimating Pre-Compression Stress in Agricultural Soils: Integrating Spectral Indices and Soil Properties through Machine Learning. Comput. Electron. Agric. 2023, 215, 108393. [Google Scholar] [CrossRef]
- Ramos, T.B.; Castanheira, N.; Oliveira, A.R.; Paz, A.M.; Darouich, H.; Simionesei, L.; Farzamian, M.; Gonçalves, M.C. Soil Salinity Assessment Using Vegetation Indices Derived from Sentinel-2 Multispectral Data. Application to Lezíria Grande, Portugal. Agric. Water Manag. 2020, 241, 106387. [Google Scholar] [CrossRef]
- Gopalakrishnan, T.; Kumar, L. Modeling and Mapping of Soil Salinity and Its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka. Sustainability 2020, 12, 8317. [Google Scholar] [CrossRef]
- Wang, N.; Peng, J.; Xue, J.; Zhang, X.; Huang, J.; Biswas, A.; He, Y.; Shi, Z. A Framework for Determining the Total Salt Content of Soil Profiles Using Time-Series Sentinel-2 Images and a Random Forest-Temporal Convolution Network. Geoderma 2022, 409, 115656. [Google Scholar] [CrossRef]
- Wang, N.; Peng, J.; Chen, S.; Huang, J.; Li, H.; Biswas, A.; He, Y.; Shi, Z. Improving Remote Sensing of Salinity on Topsoil with Crop Residues Using Novel Indices of Optical and Microwave Bands. Geoderma 2022, 422, 115935. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Metwaly, M.M.; Metwalli, M.R.; AbdelRahman, M.A.E.; Badreldin, N. Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions. Remote Sens. 2023, 15, 1751. [Google Scholar] [CrossRef]
- Golestani, M.; Mosleh Ghahfarokhi, Z.; Esfandiarpour-Boroujeni, I.; Shirani, H. Evaluating the Spatiotemporal Variations of Soil Salinity in Sirjan Playa, Iran Using Sentinel-2A and Landsat-8 OLI Imagery. CATENA 2023, 231, 107375. [Google Scholar] [CrossRef]
- Aksoy, S.; Yildirim, A.; Gorji, T.; Hamzehpour, N.; Tanik, A.; Sertel, E. Assessing the Performance of Machine Learning Algorithms for Soil Salinity Mapping in Google Earth Engine Platform Using Sentinel-2A and Landsat-8 OLI Data. Adv. Space Res. 2022, 69, 1072–1086. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Li, H.; Yin, C.; Liu, W.; Wang, T.; Zhang, H. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sens. 2021, 13, 305. [Google Scholar] [CrossRef]
- Naimi, S.; Ayoubi, S.; Zeraatpisheh, M.; Dematte, J.A.M. Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach. Remote Sens. 2021, 13, 4825. [Google Scholar] [CrossRef]
- Hervé, D.; Lezdema, R.; Orsag, V.; Coudrain, A.; Talbi, A.; Ribstein, P.; Marsily, G.D.; Flores, M.; Mita, V.; Chungara, J.; et al. Limitantes y Manejo de Los Suelos Salinos y/o Sodicos En El Altiplano Boliviano. 2002. Available online: https://core.ac.uk/download/pdf/39844995.pdf (accessed on 5 January 2023).
- Satge, F.; Denezine, M.; Pillco, R.; Timouk, F.; Pinel, S.; Molina, J.; Garnier, J.; Seyler, F.; Bonnet, M.-P. Absolute and Relative Height-Pixel Accuracy of SRTM-GL1 over the South American Andean Plateau. ISPRS J. Photogramm. Remote Sens. 2016, 121, 157–166. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.P.; Timouk, F.; Calmant, S.; Pillco, R.; Molina, J.; Lavado-Casimiro, W.; Arsen, A.; Crétaux, J.F.; Garnier, J. Accuracy Assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano Watershed Using ICESat/GLAS Data. Int. J. Remote Sens. 2015, 36, 465–488. [Google Scholar] [CrossRef]
- Miranda, R. Adubação Orgânica em Condições de Irrigação Suplementar e Seu Efeito na Produtividade da Quinua (Chenopodium Quinoa Willd) No Planalto da Bolívia. Tese de Doutorado, Universidade Federal de Santa Maria. 2012. Available online: http://repositorio.ufsm.br/handle/1/3337 (accessed on 20 April 2023).
- Satgé, F.; Pillco, R.; Molina-Carpio, J.; Mollinedo, P.P.; Bonnet, M.-P. Reliability of Gridded Temperature Datasets to Monitor Surface Air Temperature Variability over Bolivia. Int. J. Climatol. 2023, 43, 6191–6206. [Google Scholar] [CrossRef]
- Garcia, M.; Raes, D.; Allen, R.; Herbas, C. Dynamics of Reference Evapotranspiration in the Bolivian Highlands (Altiplano). Agric. For. Meteorol. 2004, 125, 67–82. [Google Scholar] [CrossRef]
- Satgé, F.; Espinoza, R.; Zolá, R.P.; Roig, H.; Timouk, F.; Molina, J.; Garnier, J.; Calmant, S.; Seyler, F.; Bonnet, M.-P. Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef]
- Canedo, C.; Pillco Zolá, R.; Berndtsson, R. Role of Hydrological Studies for the Development of the TDPS System. Water 2016, 8, 144. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Viena, Austria, 2022; ISBN 979-8-9862451-1-9. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Electrical Conductivity, Soil/Water, 1:5; FAO: Rome, Italy, 2021. [Google Scholar]
- Orsag, V. El Recurso Suelo: Principios Para su Manejo y Conservación, 1st ed.; Zeus: La Paz, Bolivia, 2010; ISBN 978-99954-732-9-7. [Google Scholar]
- Coudrain-Ribstein, A.; Olive, P.; Quintanilla, J.; Sondag, F.; Cahuaya, D. Salinity and Isotopic Dynamics of the Groundwater Resources on the Bolivian Altiplano. In Proceedings of the 1994 International Symposium on Application of Tracers in Arid Zone Hydrology, Vienna, Italy, 22–26 August 1994; pp. 267–276. [Google Scholar]
- Garcia, M.E.; Bengtsson, L.; Persson, K.M. On the Distribution of Saline Groundwater in the Poopo Basin, Central Bolivian Highland. J. Water Manag. Res. 2010, 66, 199–203. [Google Scholar]
- Luo, C.; Zhang, W.; Zhang, X.; Liu, H. Mapping Soil Organic Matter Content Using Sentinel-2 Synthetic Images at Different Time Intervals in Northeast China. Int. J. Digit. Earth 2023, 16, 1094–1107. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Sahbeni, G.; Székely, B. Salinity Levels Discrimination Using ERS-1/2 and Sentinel-1 SAR Time Series Data in Hortobágyi National Park, Hungary. In Proceedings of the 2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Istanbul, Turkey, 7–9 March 2022; pp. 194–197. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Taylor & Francis: Abingdon, UK, 1984; ISBN 978-0-412-04841-8. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Safanelli, J.L.; Poppiel, R.R.; Ruiz, L.F.C.; Bonfatti, B.R.; Mello, F.A.d.O.; Rizzo, R.; Demattê, J.A.M. Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance Global-Scale Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 400. [Google Scholar] [CrossRef]
- Farifteh, J.; van der Meer, F.; van der Meijde, M.; Atzberger, C. Spectral Characteristics of Salt-Affected Soils: A Laboratory Experiment. Geoderma 2008, 145, 196–206. [Google Scholar] [CrossRef]
- Amal, A.; Lalit, K. Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil Organic Carbon and Texture Retrieving and Mapping Using Proximal, Airborne and Sentinel-2 Spectral Imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of Changes in Leaf Water Content Using Near- and Middle-Infrared Reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.; Zhang, C.; Wang, J.; Wang, J.; Pan, Y. Monitoring the Seasonal Bare Soil Areas in Beijing Using Multi-Temporal TM Images. In Proceedings of the IGARSS 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 5, pp. 3379–3382. [Google Scholar]
- García, M.J.L.; Caselles, V. Mapping Burns and Natural Reforestation Using Thematic Mapper Data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment (LA) Sampling and Analysis Methods. In FIREMON: Fire Effects Monitoring and Inventory System; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; pp. LA 1–LA 51. [Google Scholar]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Dehni, A.; Lounis, M. Remote Sensing Techniques for Salt Affected Soil Mapping: Application to the Oran Region of Algeria. Procedia Eng. 2012, 33, 188–198. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Khan, N.; Rastoskuev, V.V.; Shalina, E.; Sato, Y. Mapping Salt-Affected Soils Using Remote Sensing Indicators-A Simple Approach With the Use of GIS IDRISI. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001. [Google Scholar]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Awad, M.; Fraihat, S. Recursive Feature Elimination with Cross-Validation with Decision Tree: Feature Selection Method for Machine Learning-Based Intrusion Detection Systems. J. Sens. Actuator Netw. 2023, 12, 67. [Google Scholar] [CrossRef]
- Murray, L.; Nguyen, H.; Lee, Y.-F.; Remmenga, M.; Smith, D. Variance Inflation Factors in Regression Models with Dummy Variables. Conf. Appl. Stat. Agric. 2012. [Google Scholar] [CrossRef]
- Triki Fourati, H.; Bouaziz, M.; Benzina, M.; Bouaziz, S. Detection of Terrain Indices Related to Soil Salinity and Mapping Salt-Affected Soils Using Remote Sensing and Geostatistical Techniques. Environ. Monit. Assess. 2017, 189, 177. [Google Scholar] [CrossRef] [PubMed]
- Shahrayini, E.; Noroozi, A.A. Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors: A Case Study in Iran. Environ. Model. Assess. 2022, 27, 901–913. [Google Scholar] [CrossRef]
- Cutting, B.J.; Atzberger, C.; Gholizadeh, A.; Robinson, D.A.; Mendoza-Ulloa, J.; Marti-Cardona, B. Remote Quantification of Soil Organic Carbon: Role of Topography in the Intra-Field Distribution. Remote Sens. 2024, 16, 1510. [Google Scholar] [CrossRef]
- Akça, E.; Aydin, M.; Kapur, S.; Kume, T.; Nagano, T.; Watanabe, T.; Çilek, A.; Zorlu, K. Long-Term Monitoring of Soil Salinity in a Semi-Arid Environment of Turkey. CATENA 2020, 193, 104614. [Google Scholar] [CrossRef]
- Zhang, K.; Xia, J.; Su, L.; Gao, F.; Cui, Q.; Xing, X.; Dong, M.; Li, C. Effects of Microtopographic Patterns on Plant Growth and Soil Improvement in Coastal Wetlands of the Yellow River Delta. Front. Plant Sci. 2023, 14, 1162013. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Tian, J.; Tian, Q.; Xu, K.; Xu, N. Development of Soil Moisture Indices from Differences in Water Absorption between Shortwave-Infrared Bands. ISPRS J. Photogramm. Remote Sens. 2019, 154, 216–230. [Google Scholar] [CrossRef]
- Al-Ali, Z.; Abulibdeh, A.; Al-Awadhi, T.; Mohan, M.; Al Nasiri, N.; Al-Barwani, M.; Al Nabbi, S.; Abdullah, M. Examining the Potential and Effectiveness of Water Indices Using Multispectral Sentinel-2 Data to Detect Soil Moisture as an Indicator of Mudflow Occurrence in Arid Regions. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103887. [Google Scholar] [CrossRef]
- Gómez Flores, J.L.; Ramos Rodríguez, M.; González Jiménez, A.; Farzamian, M.; Herencia Galán, J.F.; Salvatierra Bellido, B.; Cermeño Sacristan, P.; Vanderlinden, K. Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils. Remote Sens. 2022, 14, 3389. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L.; et al. Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Trans. Geosci. Remote Sens. 2019, 57, 520–539. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Lovergine, F.P.; Palmisano, D.; Peng, J.; Marzahn, P.; Wegmüller, U.; Cartus, O.; Dąbrowska-Zielińska, K.; et al. Sentinel-1 Soil Moisture at 1 Km Resolution: A Validation Study. Remote Sens. Environ. 2021, 263, 112554. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Dey, S.; Homayouni, S.; Bhattacharya, A.; Rao, Y.S. Field-Scale Soil Moisture Estimation Using Sentinel-1 GRD SAR Data. Adv. Space Res. 2022, 70, 3845–3858. [Google Scholar] [CrossRef]
- Mohseni, F.; Mirmazloumi, S.M.; Mokhtarzade, M.; Jamali, S.; Homayouni, S. Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products. Remote Sens. 2022, 14, 4624. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Choker, M.; Zribi, M.; Bazzi, H.; Vaudour, E.; Gilliot, J.-M.; Ebengo, D.M. Potential of Sentinel-1 Images for Estimating the Soil Roughness over Bare Agricultural Soils. Water 2018, 10, 131. [Google Scholar] [CrossRef]
- Liu, Y.; Rao, P.; Zhou, W.; Singh, B.; Srivastava, A.K.; Poonia, S.P.; Berkel, D.V.; Jain, M. Using Sentinel-1, Sentinel-2, and Planet Satellite Data to Map Field-Level Tillage Practices in Smallholder Systems. PLoS ONE 2022, 17, e0277425. [Google Scholar] [CrossRef] [PubMed]
- Vaudour, E.; Gholizadeh, A.; Castaldi, F.; Saberioon, M.; Borůvka, L.; Urbina-Salazar, D.; Fouad, Y.; Arrouays, D.; Richer-de-Forges, A.C.; Biney, J.; et al. Satellite Imagery to Map Topsoil Organic Carbon Content over Cultivated Areas: An Overview. Remote Sens. 2022, 14, 2917. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-Resolution Digital Mapping of Soil Organic Carbon and Soil Total Nitrogen Using DEM Derivatives, Sentinel-1 and Sentinel-2 Data Based on Machine Learning Algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef]
- Zhou, T.; Lv, W.; Geng, Y.; Xiao, S.; Chen, J.; Xu, X.; Pan, J.; Si, B.; Lausch, A. National-Scale Spatial Prediction of Soil Organic Carbon and Total Nitrogen Using Long-Term Optical and Microwave Satellite Observations in Google Earth Engine. Comput. Electron. Agric. 2023, 210, 107928. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, M.; Zhang, Y.; Mao, D.; Li, F.; Wu, F.; Song, J.; Li, X.; Kou, C.; Li, C.; et al. Comparison of Machine Learning Methods for Predicting Soil Total Nitrogen Content Using Landsat-8, Sentinel-1, and Sentinel-2 Images. Remote Sens. 2023, 15, 2907. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Peng, X.; Hu, B.; Song, X. Synergetic Use of DEM Derivatives, Sentinel-1 and Sentinel-2 Data for Mapping Soil Properties of a Sloped Cropland Based on a Two-Step Ensemble Learning Method. Sci. Total Environ. 2023, 866, 161421. [Google Scholar] [CrossRef] [PubMed]
- Azizi, K.; Garosi, Y.; Ayoubi, S.; Tajik, S. Integration of Sentinel-1/2 and Topographic Attributes to Predict the Spatial Distribution of Soil Texture Fractions in Some Agricultural Soils of Western Iran. Soil Tillage Res. 2023, 229, 105681. [Google Scholar] [CrossRef]
- Ngu, N.H.; Thanh, N.N.; Duc, T.T.; Non, D.Q.; Thuy An, N.T.; Chotpantarat, S. Active Learning-Based Random Forest Algorithm Used for Soil Texture Classification Mapping in Central Vietnam. CATENA 2024, 234, 107629. [Google Scholar] [CrossRef]
- Mammadov, E.; Nowosad, J.; Glaesser, C. Estimation and Mapping of Surface Soil Properties in the Caucasus Mountains, Azerbaijan Using High-Resolution Remote Sensing Data. Geoderma Reg. 2021, 26, e00411. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Sun, X.; Yan, J.; Sun, Y.; Chen, J. Mapping Topsoil pH Using Different Predictive Models and Covariate Sets in Henan Province, Central China. Ecol. Inform. 2023, 78, 102290. [Google Scholar] [CrossRef]
- Lotfollahi, L.; Delavar, M.A.; Biswas, A.; Jamshidi, M.; Fatehi, S.; Taghizadeh-Mehrjardi, R. Spatial Prediction and Uncertainty Estimation of Crucial GlobalSoilMap Properties—A Contextual Study in the Semi-Arid Area of Western Iran. Geoderma Reg. 2023, 35, e00713. [Google Scholar] [CrossRef]
- Sander, L.; Jacobsen, S.-E. The Quinoa Boom of the Southern Bolivian Altiplano: Linking Geomorphology, Erosion and Spatial Production Patterns. In Proceedings of the Geophysical Research Abstracts; University of Copenhagen: Vienna, Austria, 2014; Volume 16, p. 1. [Google Scholar]
- Barrientos, E.; Carevic, F.; Delatorre, J. La Sustentabilidad Del Altiplano Sur de Bolivia y Su Relación Con La Ampliación de Superficies de Cultivo de Quinua. Idesia Arica 2017, 35, 7–15. [Google Scholar] [CrossRef]
- Bonifacio, A.; Aroni, G.; Villca, M.; Bentley, J.W. Recovering from Quinoa: Regenerative Agricultural Research in Bolivia. J. Crop Improv. 2023, 37, 687–708. [Google Scholar] [CrossRef]
Mission | Date | Number of Samples | Date S1 | Date S2 |
---|---|---|---|---|
1 | 17 to 19 July 2022 | 17 | 18, 30 July 2022 | 17, 22, 27 July 2022 |
2 | 10 to 12 August 2022 | 18 | 11, 23 August 2022 | 11, 16, 21 August 2022 |
3 | 7 to 9 April 2023 | 57 | 8, 20 April 2023 | 8, 13, 18 April 2023 |
4 | 10 to 12 July 2023 | 79 | 13, 25 July 2023 | 12, 17, 22 July 2023 |
5 | 2 to 4 October 2023 | 84 | 5, 17 October 2023 | 5, 10, 15 October 2023 |
Total: | 255 |
N | Index/Acronym | Formula * or Description | Reference |
---|---|---|---|
Sentinel-2 bands | B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 | ||
1 | Normalized Differential Vegetation Index (NDVI) | [66] | |
2 | Soil-Adjusted VegetationIndex (SAVI) | [67] | |
3 | Enhanced Vegetation Index (EVI) | [68] | |
4 | Normalized Difference Moisture Index (NDMI) | [69] | |
5 | Moisture Stress Index (MSI1) | [70] | |
6 | Moisture Stress Index (MSI2) | Modified from [69] | |
7 | Bare Soil Index (BSI) | [71] | |
8 | Normalized Burn Ratio (NBR) | [72] | |
9 | Normalized Burn Ratio 2 (NBR2) | [73] | |
10 | Normalized Difference Water Index (NDWI) | [74] | |
11 | Normalized Salinity Index (NSI1) | [1] | |
12 | Modified Normalized Salinity Index (NSI2) | Modified from [1] | |
13 | Salinity Index 1 (SI1) | [75] | |
14 | Salinity Index 2 (SI2) | [14] | |
15 | Salinity Index 3 (SI3) | [14] | |
16 | Salinity Index 4 (SI4) | [1] | |
17 | Salinity Index 5 (SI5) | [14] | |
18 | Salinity Index 6 (SI6) | [14] | |
19 | Vegetation Soil Salinity Index (VSSI) | [76] | |
20 | Normalized Difference Salinity Index (NSI) | [77] | |
21 | Salinity Ratio (SR) | [76] | |
22 | Canopy Response Salinity Index (CRSI) | [1] | |
23 | Brightness Index (BI1) | [78] | |
24 | Brightness Index (BI2) | [75] |
N | Index/Acronym | Formula * or Description | Reference |
---|---|---|---|
Sentinel-1 polarization (dB) | VV, VH | ||
1 | Soil texture index 1 (IT1) | [25] | |
2 | Soil texture index 1 (IT2) | ||
3 | Soil texture index 1 (IT3) | ||
4 | Soil texture index 1 (IT4) | ||
5 | Soil texture index 1 (IT5) |
N | Index/Acronym | Formula * | Reference |
---|---|---|---|
DEM | [79] | ||
1 | Slope | [62] | |
2 | Aspect | ||
3 | Hillshade | ||
4 | Northness | ||
5 | Eastness | ||
6 | Horizontal Curvature | ||
7 | Vertical Curvature | ||
8 | Mean Curvature | ||
9 | Gaussian Curvature | ||
10 | Minimal Curvature | ||
11 | Maximal Curvature | ||
12 | Shape Index |
Model | Metric | Scenario-1 (R) | Scenario-2 (O) | Scenario-3 (R+O) | Scenario-4 (R+O+T) | ||||
---|---|---|---|---|---|---|---|---|---|
TT | SR | TT | SR | TT | SR | TT | SR | ||
RF | R2 | 0.21 | 0.19 | 0.57 | 0.62 | 0.58 | 0.63 | 0.66 | 0.75 ** |
RMSE (µS∙cm−1) | 5646 | 2004 | 4143 | 3617 | 3776 | 3550 | 3820 | 2230 ** | |
XGB | R2 | 0.03 | 0.07 | 0.64 | 0.69 | 0.63 | 0.66 | 0.76 | 0.76 ** |
RMSE (µS∙cm−1) | 7151 | 5247 | 3652 | 3336 | 3708 | 3773 | 3042 | 2890 ** | |
DT | R2 | 0.07 | −0.02 | 0.54 | 0.66 | 0.55 | 0.56 | 0.64 | 0.73 ** |
RMSE (µS∙cm−1) | 6638 | 6643 | 4832 | 3252 | 4610 | 3398 | 4206 | 2658 | |
GB | R2 | 0.16 | 0.10 | 0.56 | 0.62 | 0.64 | 0.73 | 0.70 | 0.74 ** |
RMSE (µS∙cm−1) | 4513 | 6212 | 3897 | 3604 | 3507 | 3026 | 3421 | 3027 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tola, D.; Satgé, F.; Pillco Zolá, R.; Sainz, H.; Condori, B.; Miranda, R.; Yujra, E.; Molina-Carpio, J.; Hostache, R.; Espinoza-Villar, R. Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models. Remote Sens. 2024, 16, 3456. https://doi.org/10.3390/rs16183456
Tola D, Satgé F, Pillco Zolá R, Sainz H, Condori B, Miranda R, Yujra E, Molina-Carpio J, Hostache R, Espinoza-Villar R. Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models. Remote Sensing. 2024; 16(18):3456. https://doi.org/10.3390/rs16183456
Chicago/Turabian StyleTola, Diego, Frédéric Satgé, Ramiro Pillco Zolá, Humberto Sainz, Bruno Condori, Roberto Miranda, Elizabeth Yujra, Jorge Molina-Carpio, Renaud Hostache, and Raúl Espinoza-Villar. 2024. "Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models" Remote Sensing 16, no. 18: 3456. https://doi.org/10.3390/rs16183456
APA StyleTola, D., Satgé, F., Pillco Zolá, R., Sainz, H., Condori, B., Miranda, R., Yujra, E., Molina-Carpio, J., Hostache, R., & Espinoza-Villar, R. (2024). Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models. Remote Sensing, 16(18), 3456. https://doi.org/10.3390/rs16183456