Changes in Vegetation Cover and the Relationship with Surface Temperature in the Cananéia–Iguape Coastal System, São Paulo, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Data Processing and Analysis
3. Results
3.1. Temporal Correlation of Vegetation Indices with Climate Variables
3.1.1. Annual Temporal Correlation
3.1.2. Seasonal Temporal Correlation
3.2. Components Spatial Correlation of Vegetation Indices with Surface Temperature
3.2.1. Spatial Annual Correlation
3.2.2. Seasonal Spatial Correlation
4. Discussion
4.1. Temporal Correlation of Vegetation Indices with Climate Variables
4.2. Components Spatial Correlation of Vegetation Indices with Surface Temperature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pradhan, B.; Yoon, S.; Lee, S. Examining the Dynamics of Vegetation in South Korea: An Integrated Analysis Using Remote Sensing and In Situ Data. Remote Sens. 2024, 16, 300. [Google Scholar] [CrossRef]
- Dastigerdi, M.; Nadi, M.; Sarjaz, M.R.; Kiapasha, K. Trend Analysis of MODIS NDVI Time Series and Its Relationship to Temperature and Precipitation in Northeastern of Iran. Environ. Monit. Assess. 2024, 196, 346. [Google Scholar] [CrossRef]
- Ukasha, M.; Ramirez, J.A.; Niemann, J.D. Temporal Variations of NDVI and LAI and Interactions with Hydroclimatic Variables in a Large and Agro-Ecologically Diverse Region. J. Geophys. Res. Biogeosci 2022, 127, e2021JG006395. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Shimabuluro, Y.E.; Kuplich, T.M. Sensoriamento Remoto da Vegetação, 2nd ed.; Oficina de Texto: São Paulo, Brazil, 2012. [Google Scholar]
- Sedighifar, Z.; Motlagh, M.G.; Halimi, M. Investigating Spatiotemporal Relationship between EVI of the MODIS and Climate Variables in Northern Iran. Int. J. Environ. Sci. Technol. 2020, 17, 733–744. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Yang, Y.; Zhang, L.; Zhang, Y.; Li, S.; Wei, Y. Spatial-Temporal Evolution Characteristics and Driving Force Analysis of NDVI in the Minjiang River Basin, China, from 2001 to 2020. Water 2022, 14, 2923. [Google Scholar] [CrossRef]
- Watson, D.J. Comparative Physiological Studies in Growth of Field Crops. I Variation in Net Assimilation Rate and Learf Area between Species and Varieties, and within and between Yars. Annatomy Bot. 1974, 38, 41–76. [Google Scholar]
- Zhao, J.; Wang, Y.; Zhang, H.; Zhang, Z.; Guo, X.; Yu, S.; Du, W. Spatially and Temporally Continuous LAI Datasets Based on the Mixed Pixel Decomposition Method. Springerplus 2016, 5, 516. [Google Scholar] [CrossRef]
- Wandelli, E.V.; Marques Filho, A.O. Medidas de Radiação Solar e Índice de Área Foliar de Coberturas Vegetais. Acta Amazon. 1999, 29, 57–78. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal Responses of NDVI to Precipitation and Temperature in the Central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Shi, L.; Fan, H.; Yang, L.; Jiang, Y.; Sun, Z.; Zhang, Y. NDVI-Based Spatial and Temporal Vegetation Trends and Their Response to Precipitation and Temperature Changes in the Mu Us Desert from 2000 to 2019. Water Sci. Technol. 2023, 88, 430–442. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Wang, C.; Zhang, T.; Dong, X.; Liu, Y. Vegetation Dynamics Influenced by Climate Change and Human Activities in the Hanjiang River Basin, Central China. Ecol. Indic. 2022, 145, 109586. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. Land Surface Temperature and Normalized Difference Vegetation Index Relationship: A Seasonal Study on a Tropical City. SN Appl. Sci. 2020, 2, 1661. [Google Scholar] [CrossRef]
- Xuefei, L.; Guotao, D.; Huazhu, X. Spatial-Temporal Variation of NDVI and Its Responses to Precipitation in the Upper of Heihe from 2000 to 2019. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Zhangjiajie, China, 2021; Volume 783. [Google Scholar]
- Kumari, N.; Srivastava, A.; Dumka, U.C. A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Sharma, M.; Bangotra, P.; Gautam, A.S.; Gautam, S. Sensitivity of Normalized Difference Vegetation Index (NDVI) to Land Surface Temperature, Soil Moisture and Precipitation over District Gautam Buddh Nagar, UP, India. Stoch. Environ. Res. Risk Assess. 2022, 36, 1779–1789. [Google Scholar] [CrossRef]
- Hussien, K.; Kebede, A.; Mekuriaw, A.; Beza, S.A.; Erena, S.H. Spatiotemporal Trends of NDVI and Its Response to Climate Variability in the Abbay River Basin, Ethiopia. Heliyon 2023, 9, e14113. [Google Scholar] [CrossRef]
- Adepoju, K.; Adelabu, S.; Fashae, O. Vegetation Response to Recent Trends in Climate and Landuse Dynamics in a Typical Humid and Dry Tropical Region under Global Change. Adv. Meteorol. 2019, 2019, 4946127. [Google Scholar] [CrossRef]
- Sayão, V.M.; dos Santos, N.V.; de Sousa Mendes, W.; Marques, K.P.P.; Safanelli, J.L.; Poppiel, R.R.; Demattê, J.A.M. Land Use/Land Cover Changes and Bare Soil Surface Temperature Monitoring in Southeast Brazil. Geoderma Reg. 2020, 22, e00313. [Google Scholar] [CrossRef]
- Amaral Carrasco, R.; Maezano Faita Pinheiro, M.; Marcato Junior, J.; Ennes Cicerelli, R.; Antônio Silva, P.; Prado Osco, L.; Paula Marques Ramos, A. Land Use/Land Cover Change Dynamics and Their Effects on Land Surface Temperature in the Western Region of the State of São Paulo, Brazil. Reg. Environ. Chang. 2020, 20, 96. [Google Scholar] [CrossRef]
- Wanderley, R.L.N.; Domingues, L.M.; Joly, C.A.; Da Rocha, H.R. Relationship between Land Surface Temperature and Fraction of Anthropized Area in the Atlantic Forest Region, Brazil. PLoS ONE 2019, 14, e0225443. [Google Scholar] [CrossRef]
- De Oliveira, C.M.M.; Rezende, A.V.; Sano, E.E.; Matricardi, E.A.T.; Delgado, R.C. Spatiotemporal Assessment of Land Surface Temperature and Vegetation in Tropical Urban Areas. Urban. Ecosyst. 2023, 26, 45–65. [Google Scholar] [CrossRef]
- Almeida de Oliveira, P.; Conti, L.A.; Nascimento Neto, F.C.; Barcellos, R.L.; Cunha-Lignon, M. Mangrove Individual Tree Detection Based on the Uncrewed Aerial Vehicle Multispectral Imagery. Remote Sens. Appl. 2024, 33, 101100. [Google Scholar] [CrossRef]
- Conti, L.A.; de Araújo, C.A.S.; Cunha-Lignon, M. Spatial Database Modeling for Mangrove Forests Mapping; Example of Two Estuarine Systems in Brazil. Model. Earth Syst. Environ. 2016, 2, 73. [Google Scholar] [CrossRef]
- De Lima, N.G.B.; Galvani, E. Interação Dos Atributos Climáticos Nos Manguezais Do Litoral Sul de São Paulo e Sua Relação Com Os Controles Climáticos. Confins 2018, 36, 1–21. [Google Scholar] [CrossRef]
- De Lima, N.G.B.; Cunha-Lignon, M.; Galvani, E. Microclimatic Analysis of Mangroves in Two Distinct Categories of Protected Areas and Conserved Status. Soc. Nat. 2021, 33, e57483. [Google Scholar] [CrossRef]
- Lima, N.; Cunha-Lignon, M.; Martins, A.; Armani, G.; Galvani, E. Impacts of Extreme Weather Event in Southeast Brazilian Mangrove Forest. Atmosphere 2023, 14, 1195. [Google Scholar] [CrossRef]
- Galvani, E.; de Lima, N.G.B. Estudos Climáticos Nas Escalas Inferiores Do Clima: Manguezais Da Barra Do Rio Ribeira, Iguape, SP. Mercator 2010, 9, 25–38. [Google Scholar]
- IBGE (Instituto Brasileiro de Geografia Estatística). Available online: https://cidades.ibge.gov.br/brasil/sp/cananeia/panorama (accessed on 29 August 2023).
- Ross, J.L.S. A Morfogênese Da Bacia Do Ribeira Do Iguape e Os Sistemas Ambientais. GEOUSP—Espaço Tempo 2002, 12, 21–46. [Google Scholar] [CrossRef]
- Dias, R.L.; de Oliveira, R.C. Caracterização Socioeconômica e Mapeamento Do Uso e Ocupação Da Terra Do Litoral Sul Do Estado de São Paulo. Soc. Nat. 2015, 27, 111–123. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna Neto, J.L. Ritmo Climático e a Gênese Das Chuvas Na Zona Costeira Do Estado de São Paulo-Brasil. Rev. Bras. Geogr. 1991, 53, 45–62. [Google Scholar]
- Galvani, E.; Gilma, N.; De Lima, B.; Alves, R.R. Variabilidade e Tendência Das Precipitações No Litoral Sul de São Paulo. Rev. Geonorte 2012, 1, 1163–1176. [Google Scholar]
- Reboita, M.S.; Alonso Gan, M.; Porfírio, R.; Rocha, D.A.; Ambrizzi, E.T. Precipitation Regimes in South America: A Bibliography Review. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Porfírio Da Rocha, R. Entendendo o Tempo e o Clima Na América Do Sul. Terra Didat. 2012, 8, 34–50. [Google Scholar] [CrossRef]
- Didan, K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA: Washington, DC, USA, 2013. [Google Scholar]
- Phan, T.N.; Kappas, M.; Nguyen, K.T.; Tran, T.P.; Tran, Q.V.; Emam, A.R. Evaluation of MODIS Land Surface Temperature Products for Daily Air Surface Temperature Estimation in Northwest Vietnam. Int. J. Remote Sens. 2019, 40, 5544–5562. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Wan, Z. New Refinements and Validation of the Collection-6 MODIS Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Shiff, S.; Helman, D.; Lensky, I.M. Worldwide Continuous Gap-Filled MODIS Land Surface Temperature Dataset. Sci. Data 2021, 8, 74. [Google Scholar] [CrossRef]
- Alqasemi, A.S.; Hereher, M.E.; Al-Quraishi, A.M.F.; Saibi, H.; Aldahan, A.; Abuelgasim, A. Retrieval of Monthly Maximum and Minimum Air Temperature Using MODIS Aqua Land Surface Temperature Data over the United Arab Emirates. Geocarto Int. 2022, 37, 2996–3013. [Google Scholar] [CrossRef]
- Yu, P.; Zhao, T.; Shi, J.; Ran, Y.; Jia, L.; Ji, D.; Xue, H. Global Spatiotemporally Continuous MODIS Land Surface Temperature Dataset. Sci. Data 2022, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, S.; Li, X.; Jiang, Z. Indication of the Two Linear Correlation Methods between Vegetation Index and Climatic Factors: An Example in the Three River-Headwater Region of China during 2000–2016. Atmosphere 2020, 11, 606. [Google Scholar] [CrossRef]
- Qasimi, A.B.; Isazade, V.; Kaplan, G.; Nadry, Z. Spatiotemporal and Multi-Sensor Analysis of Surface Temperature, NDVI, and Precipitation Using Google Earth Engine Cloud Computing Platform. Russ. J. Earth Sci. 2023, 22, 1–12. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W.; Xu, L. The Relationship between Land Surface Temperature and NDVI with Remote Sensing: Application to Shanghai Landsat 7 ETM+ Data. Int. J. Remote Sens. 2007, 28, 3205–3226. [Google Scholar] [CrossRef]
- He, D.; Yi, G.; Zhang, T.; Miao, J.; Li, J.; Bie, X. Temporal and Spatial Characteristics of EVI and Its Response to Climatic Factors in Recent 16 Years Based on Grey Relational Analysis in Inner Mongolia Autonomous Region, China. Remote Sens. 2018, 10, 961. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Bagherzadeh, A.; Liu, M. Spatio-Temporal Variation Characteristics of NDVI and Its Response to Climate on the Loess Plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Coll, C.; Wan, Z.; Galve, J.M. Temperature-Based and Radiance-Based Validations of the V5 MODIS Land Surface Temperature Product. J. Geophys. Res. Atmos. 2009, 114, 1–15. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST Relationship and the Use of Temperature-Related Drought Indices over North America. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Han, W.; Chen, D.; Li, H.; Chang, Z.; Chen, J.; Ye, L.; Liu, S.; Wang, Z. Spatiotemporal Variation of NDVI in Anhui Province from 2001 to 2019 and Its Response to Climatic Factors. Forests 2022, 13, 1643. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Eyassu Sereke, T. Assessment of NDVI Variations in Responses to Climate Change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Khan, Z.; Javed, A. Correlation Between Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) in Wardha Valley Coalfield, Maharashtra, Central India. Nova Geodesia 2022, 2, 53. [Google Scholar] [CrossRef]
Period | JFM | AMJ | JAS | OND | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | NDVI | EVI | LAI | NDVI | EVI | LAI | NDVI | EVI | LAI | NDVI | EVI | LAI |
Average | 0.8 | 0.5 | 4.6 | 0.8 | 0.5 | 4.6 | 0.8 | 0.4 | 4.0 | 0.7 | 0.5 | 4.0 |
Minimum | 0.7 | 0.5 | 3.8 | 0.7 | 0.4 | 3.7 | 0.7 | 0.4 | 3.5 | 0.6 | 0.4 | 3.0 |
Maximum | 0.8 | 0.5 | 5.6 | 0.8 | 0.5 | 5.2 | 0.8 | 0.5 | 4.6 | 0.8 | 0.5 | 4.7 |
Standard deviation | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.5 |
Coefficient of variation (%) | 3.4 | 3.4 | 10.2 | 3.5 | 3.3 | 8.3 | 4.3 | 4.6 | 8.3 | 5.1 | 5.3 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baratto, J.; Terassi, P.M.d.B.; Galvani, E. Changes in Vegetation Cover and the Relationship with Surface Temperature in the Cananéia–Iguape Coastal System, São Paulo, Brazil. Remote Sens. 2024, 16, 3460. https://doi.org/10.3390/rs16183460
Baratto J, Terassi PMdB, Galvani E. Changes in Vegetation Cover and the Relationship with Surface Temperature in the Cananéia–Iguape Coastal System, São Paulo, Brazil. Remote Sensing. 2024; 16(18):3460. https://doi.org/10.3390/rs16183460
Chicago/Turabian StyleBaratto, Jakeline, Paulo Miguel de Bodas Terassi, and Emerson Galvani. 2024. "Changes in Vegetation Cover and the Relationship with Surface Temperature in the Cananéia–Iguape Coastal System, São Paulo, Brazil" Remote Sensing 16, no. 18: 3460. https://doi.org/10.3390/rs16183460
APA StyleBaratto, J., Terassi, P. M. d. B., & Galvani, E. (2024). Changes in Vegetation Cover and the Relationship with Surface Temperature in the Cananéia–Iguape Coastal System, São Paulo, Brazil. Remote Sensing, 16(18), 3460. https://doi.org/10.3390/rs16183460