Weighted Contrastive Prototype Network for Few-Shot Hyperspectral Image Classification with Noisy Labels
Abstract
:1. Introduction
- To the best of our knowledge, a prototype network for handling noisy labels under few-shot setting has been introduced to the HSI classification for the first time. We provide better anti-noise performance than existing methods for few-shot HSI classification.
- Our proposed weighted prototype network utilizes the weights calculated from similarities between samples to calibrate the prototypes and bring the samples closer to their clean prototypes at the presence of noisy labels.
- We make full use of the noise information contained in the similarity weights of different samples and propose a new contrastive regularization function. This function can further constrain the model to reduce the impact of noisy samples and learn a clean feature representation.
2. Background and Related Work
2.1. Few-Shot Learning for HSI Classification
2.2. HSI Classification with Noisy Labels
2.3. Contrastive Learning with Noisy Labels
3. The Proposed Method
3.1. Meta-Learning and Feature Extraction
3.2. Weighting Samples with Noisy Labels
3.3. Weighted Prototype Network
3.4. Weighted Contrastive Regularization Function
4. Experiments
4.1. Datasets Description
- (a)
- Chikusei dataset: Acquired on 29 July 2014, in Chikusei, Ibaraki, Japan, the dataset was gathered using Hyperspectral Visible/Near-Infrared Cameras (Hyperspec-VNIRC). It encompasses 19 distinct classes and spans 2517 × 2335 pixels, maintaining a spatial resolution of 2.5 m per pixel. Comprising 128 spectral bands spanning from 363 to 1018 nm, this dataset provides comprehensive spectral information. The pseudo-color composite image and the ground-truth map of Chikusei are depicted in Figure 4. Table 1 shows the land cover classes and the corresponding numbers of samples in the Chikusei dataset.
- (b)
- IP dataset: Acquired via the airborne visible infrared imaging spectrometer (AVIRIS) sensor at the Indiana Pine test site situated in northwestern Indiana, this dataset comprises 145 × 145 pixels and initially included 224 spectral bands. However, 20 defective bands were removed, resulting in the utilization of the remaining 200 spectral bands for the experiment. With a spatial resolution of 20 m, this dataset encompasses 16 distinct classes. The pseudo-color composite image and the ground-truth map of IP are depicted in Figure 5. Table 2 shows the land cover classes and the corresponding numbers of samples in the IP dataset.
- (c)
- SA dataset: Collected using a 224-band AVIRIS sensor over the scenic Salinas Valley in California, USA, the Salinas Valley dataset boasts high spatial resolution at 3.7 m per pixel. Featuring an image encompassing 512 lines by 217 samples, this dataset underwent the removal of 20 abundant spectral bands, leaving behind 204 bands that effectively represent 16 diverse classes. The pseudo-color composite image and the ground-truth map of SA are depicted in Figure 6. Table 3 shows the land cover classes and the corresponding numbers of samples in the SA dataset.
- (d)
- PU dataset: Captured over the Pavia University, Italy, utilizing the reflective optics system imaging spectrometer (ROSIS-3), this image spans a size of 610 × 340 pixels and maintains a spatial resolution of 1.3 m per pixel across 115 spectral bands. Following the removal of 12 noisy bands, subsequent experiments were carried out using the remaining 103 bands. The pseudo-color composite image and the ground-truth map of PU are depicted in Figure 7. Table 4 shows the land cover classes and the corresponding numbers of samples in the PU dataset.
4.2. Experiment Setting
4.3. Comparing with Other Methods
4.4. Classification Visualization
4.5. Sensitive Analysis of Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boggs, J.L.; Tsegaye, T.; Coleman, T.; Reddy, K.; Fahsi, A. Relationship between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: A step toward precision agriculture. J. Sustain. Agric. 2003, 22, 5–16. [Google Scholar] [CrossRef]
- Lee, M.A.; Huang, Y.; Yao, H.; Thomson, S.J.; Bruce, L.M. Determining the effects of storage on cotton and soybean leaf samples for hyperspectral analysis. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2562–2570. [Google Scholar] [CrossRef]
- Pontius, J.; Martin, M.; Plourde, L.; Hallett, R. Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies. Remote Sens. Environ. 2008, 112, 2665–2676. [Google Scholar] [CrossRef]
- Dalponte, M.; ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2632–2645. [Google Scholar] [CrossRef]
- Chi, J.; Crawford, M.M. Spectral unmixing-based crop residue estimation using hyperspectral remote sensing data: A case study at Purdue university. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2531–2539. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Q.; Zhu, G. Fast hyperspectral anomaly detection via high-order 2-D crossing filter. IEEE Trans. Geosci. Remote Sens. 2014, 53, 620–630. [Google Scholar] [CrossRef]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, Y.; Liu, X.; Cheng, Z. Hyperspectral Image Classification Using Spectral–Spatial Double-Branch Attention Mechanism. Remote Sens. 2024, 16, 193. [Google Scholar] [CrossRef]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1199–1208. [Google Scholar]
- Li, Z.; Liu, M.; Chen, Y.; Xu, Y.; Du, Q. Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5501618. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Zhang, M.; Wang, S.; Tao, R.; Du, Q. Graph information aggregation cross-domain few-shot learning for hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 1912–1925. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, J.; Ning, Y.; Chen, N.; Sun, W.; Du, Q.; Zhou, Y. Refined Prototypical Contrastive Learning for Few-Shot Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5506214. [Google Scholar] [CrossRef]
- Tu, B.; Zhou, C.; He, D.; Huang, S.; Plaza, A. Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4116–4131. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Li, W.; Du, Q.; Liu, C.; Fang, Z.; Zhai, L. Dual-channel residual network for hyperspectral image classification with noisy labels. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5502511. [Google Scholar] [CrossRef]
- Lee, K.H.; He, X.; Zhang, L.; Yang, L. Cleannet: Transfer learning for scalable image classifier training with label noise. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5447–5456. [Google Scholar]
- Zhang, W.; Wang, Y.; Qiao, Y. MetaCleaner: Learning to Hallucinate Clean Representations for Noisy-Labeled Visual Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–19 June 2019. [Google Scholar]
- Han, J.; Luo, P.; Wang, X. Deep self-learning from noisy labels. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–19 June 2019; pp. 5138–5147. [Google Scholar]
- Ma, X.; Huang, H.; Wang, Y.; Romano, S.; Erfani, S.; Bailey, J. Normalized loss functions for deep learning with noisy labels. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 6543–6553. [Google Scholar]
- Tu, B.; Zhang, X.; Kang, X.; Zhang, G.; Li, S. Density peak-based noisy label detection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1573–1584. [Google Scholar] [CrossRef]
- Bateni, P.; Goyal, R.; Masrani, V.; Wood, F.; Sigal, L. Improved few-shot visual classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14493–14502. [Google Scholar]
- Bendre, N.; Marín, H.T.; Najafirad, P. Learning from few samples: A survey. arXiv 2020, arXiv:2007.15484. [Google Scholar]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Rao, M.; Tang, P.; Zhang, Z. A Developed Siamese CNN with 3D Adaptive Spatial-Spectral Pyramid Pooling for Hyperspectral Image Classification. Remote Sens. 2020, 12, 1964. [Google Scholar] [CrossRef]
- Liu, B.; Yu, X.; Yu, A.; Zhang, P.; Wan, G.; Wang, R. Deep few-shot learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2290–2304. [Google Scholar] [CrossRef]
- Tang, H.; Li, Y.; Han, X.; Huang, Q.; Xie, W. A spatial–spectral prototypical network for hyperspectral remote sensing image. IEEE Geosci. Remote Sens. Lett. 2019, 17, 167–171. [Google Scholar] [CrossRef]
- Sun, J.; Shen, X.; Sun, Q. Hyperspectral Image Few-Shot Classification Network Based on the Earth Mover’s Distance. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Gao, K.; Liu, B.; Yu, X.; Qin, J.; Zhang, P.; Tan, X. Deep relation network for hyperspectral image few-shot classification. Remote Sens. 2020, 12, 923. [Google Scholar] [CrossRef]
- Ma, X.; Ji, S.; Wang, J.; Geng, J.; Wang, H. Hyperspectral image classification based on two-phase relation learning network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10398–10409. [Google Scholar] [CrossRef]
- Bai, J.; Huang, S.; Xiao, Z.; Li, X.; Zhu, Y.; Regan, A.C.; Jiao, L. Few-shot hyperspectral image classification based on adaptive subspaces and feature transformation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Xi, B.; Li, J.; Li, Y.; Song, R.; Hong, D.; Chanussot, J. Few-shot learning with class-covariance metric for hyperspectral image classification. IEEE Trans. Image Process. 2022, 31, 5079–5092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yue, J.; Qin, Q. Global prototypical network for few-shot hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 4748–4759. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Li, Z.; Yang, W.; Han, Z.; Guo, J.; Yu, J. Multi-level relation learning for cross-domain few-shot hyperspectral image classification. Appl. Intell. 2024, 54, 4392–4410. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, Z.; Li, X.; Gong, Y.; Sun, X.; Liu, Y. Learning with instance-dependent label noise: A sample sieve approach. arXiv 2020, arXiv:2010.02347. [Google Scholar]
- Wei, T.; Shi, J.X.; Tu, W.W.; Li, Y.F. Robust long-tailed learning under label noise. arXiv 2021, arXiv:2108.11569. [Google Scholar]
- Cheng, D.; Liu, T.; Ning, Y.; Wang, N.; Han, B.; Niu, G.; Gao, X.; Sugiyama, M. Instance-dependent label-noise learning with manifold-regularized transition matrix estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16630–16639. [Google Scholar]
- Xia, X.; Liu, T.; Han, B.; Wang, N.; Gong, M.; Liu, H.; Niu, G.; Tao, D.; Sugiyama, M. Part-dependent label noise: Towards instance-dependent label noise. Adv. Neural Inf. Process. Syst. 2020, 33, 7597–7610. [Google Scholar]
- Chen, L.H.; Li, H.; Zhang, W.; Huang, J.; Ma, X.; Cui, J.; Li, N.; Yoo, J. Anomman: Detect anomaly on multi-view attributed networks. arXiv 2022, arXiv:2201.02822. [Google Scholar] [CrossRef]
- Li, S.; Ge, S.; Hua, Y.; Zhang, C.; Wen, H.; Liu, T.; Wang, W. Coupled-view deep classifier learning from multiple noisy annotators. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 4667–4674. [Google Scholar]
- Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; Meng, D. Meta-weight-net: Learning an explicit mapping for sample weighting. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Wang, R.; Mou, S.; Wang, X.; Xiao, W.; Ju, Q.; Shi, C.; Xie, X. Graph structure estimation neural networks. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 342–353. [Google Scholar]
- Chen, P.; Chen, G.; Ye, J.; Zhao, J.; Heng, P.A. Noise against noise: Stochastic label noise helps combat inherent label noise. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 30 April 2020. [Google Scholar]
- Hu, W.; Li, Z.; Yu, D. Simple and effective regularization methods for training on noisily labeled data with generalization guarantee. arXiv 2019, arXiv:1905.11368. [Google Scholar]
- Li, S.; Liu, T.; Tan, J.; Zeng, D.; Ge, S. Trustable Co-Label Learning From Multiple Noisy Annotators. IEEE Trans. Multimed. 2023, 25, 1045–1057. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, S.; Wu, P.; Goswami, M.; Chen, C. Learning with feature-dependent label noise: A progressive approach. arXiv 2021, arXiv:2103.07756. [Google Scholar]
- Mazumder, P.; Singh, P.; Namboodiri, V.P. Rnnp: A robust few-shot learning approach. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 2664–2673. [Google Scholar]
- Lu, J.; Jin, S.; Liang, J.; Zhang, C. Robust few-shot learning for user-provided data. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1433–1447. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.J.; Rangrej, S.B.; Petrovic, V.; Hassner, T. Few-shot learning with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 9089–9098. [Google Scholar]
- Jiang, J.; Ma, J.; Wang, Z.; Chen, C.; Liu, X. Hyperspectral image classification in the presence of noisy labels. IEEE Trans. Geosci. Remote Sens. 2018, 57, 851–865. [Google Scholar] [CrossRef]
- Tu, B.; Zhang, X.; Kang, X.; Wang, J.; Benediktsson, J.A. Spatial density peak clustering for hyperspectral image classification with noisy labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5085–5097. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Liu, X. Multilayer spectral–spatial graphs for label noisy robust hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 839–852. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning, Online, 13–18 July 2020; pp. 1597–1607. [Google Scholar]
- He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9729–9738. [Google Scholar]
- Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised contrastive learning. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020. [Google Scholar]
- Li, J.; Xiong, C.; Hoi, S.C. Learning from noisy data with robust representation learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9485–9494. [Google Scholar]
- Wu, Z.F.; Wei, T.; Jiang, J.; Mao, C.; Tang, M.; Li, Y.F. Ngc: A unified framework for learning with open-world noisy data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 62–71. [Google Scholar]
- Li, S.; Xia, X.; Ge, S.; Liu, T. Selective-supervised contrastive learning with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 316–325. [Google Scholar]
- Yi, L.; Liu, S.; She, Q.; McLeod, A.I.; Wang, B. On learning contrastive representations for learning with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16682–16691. [Google Scholar]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.; Sugiyama, M. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
Class | Name | Pixels | Class | Name | Pixels |
---|---|---|---|---|---|
1 | Water | 2345 | 11 | Row crops | 5961 |
2 | Bare soil (school) | 2859 | 12 | Plastic house | 2193 |
3 | Bare soil (park) | 236 | 13 | Manmade (non-dark) | 1220 |
4 | Bare soil (farmland) | 48,525 | 14 | Manmade (dark) | 7664 |
5 | Natural plants | 4297 | 15 | Manmade (blue) | 431 |
6 | Weeds in farmland | 1108 | 16 | Manmade (red) | 222 |
7 | Forest | 20,516 | 17 | Manmade grass | 1040 |
8 | Grass | 6515 | 18 | Asphalt | 801 |
9 | Rice field (grown) | 13,369 | 19 | Paved ground | 145 |
10 | Rice field (first stage) | 1268 | Total: 77,592 |
Class | Name | Pixels | Class | Name | Pixels |
---|---|---|---|---|---|
1 | Alfalfa | 46 | 10 | Soybean-notill | 972 |
2 | Corn-notill | 1428 | 11 | Soybean-mintill | 2455 |
3 | Corn-mintill | 830 | 12 | Soybean-clean | 593 |
4 | Corn | 237 | 13 | Wheat | 205 |
5 | Grass-pasture | 483 | 14 | Woods | 1265 |
6 | Grass-trees | 730 | 15 | Buildings-Grass-Trees-Drives | 386 |
7 | Grass-pasture-mowed | 28 | 16 | Stone-Steel-Towers | 93 |
8 | Hay-windrowed | 478 | Total: 10,249 | ||
9 | Oats | 20 |
Class | Name | Pixels | Class | Name | Pixels |
---|---|---|---|---|---|
1 | Brocoli_green_weeds 1 | 2009 | 10 | Corn_senesced_green_weeds | 3278 |
2 | Brocoli_green_weeds 2 | 3726 | 11 | Lettuce_romaine_4wk | 1068 |
3 | Fallow | 1976 | 12 | Lettuce_romaine_5wk | 1927 |
4 | Fallow_rough_plow | 1394 | 13 | Lettuce_romaine_6wk | 916 |
5 | Fallow_smooth | 2678 | 14 | Lettuce_romaine_7wk | 1070 |
6 | Stubble | 3959 | 15 | Vinyard_untrained | 7268 |
7 | Celery | 3579 | 16 | Vinyard_vertical_trellis | 1807 |
8 | Grapes_untrained | 11,271 | Total: 54,129 | ||
9 | Soil_vinyard_develop | 6203 |
Class | Name | Pixels |
---|---|---|
1 | Asphalt | 6631 |
2 | Meadows | 18,649 |
3 | Gravel | 2099 |
4 | Trees | 3064 |
5 | Metal sheets | 1345 |
6 | Bare soil | 5029 |
7 | Bitumen | 1330 |
8 | Bricks | 3682 |
9 | Shadows | 947 |
Total | 42,776 |
Class | Noise Rate = 0% | Noise Rate = 20% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | |
1 | 89.76 | 99.76 | 99.51 | 99.76 | 99.02 | 99.76 | 88.54 | 96.83 | 99.27 | 99.76 | 99.51 | 98.54 |
2 | 41.33 | 64.27 | 65.04 | 65.4 | 70.71 | 68.4 | 33.46 | 48.38 | 60.87 | 63.94 | 69.69 | 65.73 |
3 | 44.06 | 61.99 | 61.31 | 67.85 | 64.27 | 64.36 | 31.61 | 51.09 | 67.41 | 61.61 | 67.15 | 66.81 |
4 | 72.46 | 88.36 | 90.52 | 92.84 | 89.61 | 90.04 | 48.32 | 76.55 | 88.92 | 92.33 | 90.26 | 92.2 |
5 | 69.67 | 79.85 | 79.25 | 80.17 | 80.9 | 80.94 | 64.31 | 73.08 | 77.2 | 79.81 | 78.83 | 79.29 |
6 | 76.23 | 90.69 | 89.85 | 92.79 | 90.76 | 89.26 | 69.61 | 86.19 | 91.23 | 91.77 | 91.13 | 90.83 |
7 | 99.13 | 100 | 100 | 100 | 100 | 100 | 90.43 | 99.13 | 99.57 | 100 | 98.7 | 100 |
8 | 88.44 | 91.54 | 96.28 | 94.8 | 98.08 | 98.84 | 85.58 | 89.92 | 94.31 | 94.33 | 94.06 | 94.29 |
9 | 98 | 100 | 100 | 99.33 | 100 | 100 | 96.67 | 100 | 100 | 100 | 100 | 100 |
10 | 57.39 | 69.19 | 70.56 | 71.95 | 68 | 72.09 | 53.07 | 64.98 | 71.34 | 68.84 | 70.8 | 69.98 |
11 | 58.88 | 67.36 | 66.22 | 65.8 | 70.4 | 70.42 | 54.19 | 58.46 | 62.89 | 67.68 | 67.98 | 72.7 |
12 | 44 | 60.43 | 68.11 | 68.57 | 66.6 | 66.12 | 32.65 | 42.33 | 61.89 | 63.08 | 65.94 | 67.23 |
13 | 96.95 | 98 | 96.25 | 97.7 | 96.55 | 96.4 | 94.8 | 97.2 | 97.95 | 96.5 | 98.6 | 98 |
14 | 76.58 | 89.29 | 89.3 | 89.25 | 89.9 | 91.8 | 70.79 | 88.88 | 90 | 90.38 | 91.48 | 88.03 |
15 | 69.71 | 85.72 | 83.39 | 90.52 | 88.48 | 87.09 | 47.74 | 72.07 | 81.36 | 88.11 | 87.17 | 83.96 |
16 | 99.2 | 96.93 | 97.39 | 98.18 | 95 | 95.68 | 92.95 | 97.39 | 97.73 | 98.3 | 98.3 | 97.39 |
OA | 61.62 ±2.98 | 74.64 ±2.88 | 75.05 ±3.05 | 76.22 ±3.15 | 77.22 ±2.28 | 77.4 ±2.83 | 54.24 ±4.26 | 66.37 ±3.01 | 73.79 ±2.59 | 75.26 ±3.66 | 76.92 ±3.53 | 76.96 ±2.38 |
AA | 73.86 ±1.68 | 83.96 ±1.63 | 84.56 ±1.43 | 85.93 ±1.7 | 85.52 ±1.32 | 85.7 ±1.55 | 65.92 ±2.59 | 77.66 ±1.72 | 83.87 ±1.27 | 84.78 ±2.0 | 85.6 ±1.47 | 85.31 ±1.62 |
Kappa | 0.56 ±0.03 | 0.71 ±0.03 | 0.71 ±0.03 | 0.73 ±0.03 | 0.74 ±0.03 | 0.74 ±0.03 | 0.48 ±0.05 | 0.62 ±0.03 | 0.70 ±0.03 | 0.72 ±0.04 | 0.74 ±0.04 | 0.74 ±0.03 |
Class | Noise Rate = 40% | Noise Rate = 60% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | |
1 | 89.27 | 92.2 | 99.51 | 99.76 | 99.27 | 99.51 | 84.39 | 67.56 | 98.29 | 99.76 | 98.54 | 98.78 |
2 | 32.24 | 37.24 | 59.95 | 62.75 | 62.42 | 65.43 | 29.99 | 26.44 | 54.88 | 54.48 | 60.02 | 62.45 |
3 | 29.28 | 43.66 | 54.12 | 65.14 | 61.83 | 63.61 | 30.22 | 29.49 | 60.52 | 63.81 | 64.72 | 60.42 |
4 | 56.16 | 49.14 | 84.91 | 91.25 | 89.87 | 89.27 | 46.64 | 26.03 | 82.07 | 87.89 | 88.58 | 86.38 |
5 | 61.97 | 65.21 | 76.32 | 79.62 | 80.04 | 80.13 | 57.47 | 59.14 | 71.44 | 80.52 | 80.08 | 79.54 |
6 | 65.67 | 76.91 | 89.34 | 92.61 | 93.56 | 91.52 | 66.23 | 73.39 | 88.94 | 92.87 | 90.87 | 92.8 |
7 | 96.52 | 97.39 | 100 | 99.57 | 100 | 100 | 92.61 | 91.3 | 100 | 100 | 100 | 100 |
8 | 82.14 | 81.25 | 92.01 | 95.67 | 94.59 | 95.98 | 85.29 | 69.77 | 87.76 | 92.16 | 92.18 | 94.84 |
9 | 96 | 98 | 100 | 100 | 100 | 100 | 98 | 90.67 | 100 | 100 | 100 | 100 |
10 | 52.83 | 56.53 | 67.38 | 70.72 | 70.02 | 71.81 | 52.15 | 50.36 | 67.31 | 64.59 | 71.19 | 72.7 |
11 | 52.6 | 56.76 | 69.06 | 67.19 | 71.28 | 68.7 | 53.18 | 52.13 | 64.02 | 68.36 | 63.98 | 66.98 |
12 | 32.77 | 31.11 | 59.49 | 66.43 | 63.44 | 65.36 | 31.24 | 21.9 | 59.88 | 63.42 | 66.05 | 66.77 |
13 | 96.15 | 96.05 | 98.4 | 98.15 | 98.8 | 97.7 | 93.25 | 90.25 | 97.85 | 97.8 | 97 | 96.5 |
14 | 74.36 | 80.84 | 92.13 | 90.08 | 92.63 | 92.75 | 73.24 | 72.52 | 88.61 | 91.02 | 91.06 | 90.81 |
15 | 47.38 | 47.45 | 85.83 | 89.5 | 84.65 | 84.12 | 46.59 | 32.44 | 81.78 | 86.06 | 78.85 | 83.94 |
16 | 96.02 | 84.2 | 98.98 | 97.16 | 98.18 | 97.5 | 92.73 | 68.18 | 98.64 | 97.95 | 97.61 | 97.16 |
OA | 53.61 ±3.36 | 58.2 ±3.67 | 73.64 ±2.58 | 75.76 ±2.64 | 76.35 ±2.42 | 76.45 ±2.97 | 52.83 ±3.37 | 49.74 ±3.07 | 71.12 ±2.66 | 73.83 ±3.76 | 73.97 ±2.74 | 75.2 ±2.64 |
AA | 66.34 ±3.53 | 68.37 ±2.51 | 82.96 ±1.32 | 85.35 ±1.74 | 85.04 ±1.52 | 85.21 ±1.92 | 64.58 ±2.91 | 57.6 ±3.56 | 81.37 ±1.31 | 83.79 ±2.2 | 83.8 ±1.65 | 84.38 ±1.82 |
Kappa | 0.48 ±0.04 | 0.53 ±0.04 | 0.70 ±0.03 | 0.73 ±0.03 | 0.73 ±0.03 | 0.73 ±0.03 | 0.47 ±0.04 | 0.43 ±0.03 | 0.68 ±0.03 | 0.71 ±0.04 | 0.71 ±0.03 | 0.72 ±0.03 |
Class | Noise Rate = 0% | Noise Rate = 20% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | |
1 | 98.62 | 99.39 | 99.24 | 97.78 | 99.47 | 99.78 | 96.35 | 98.29 | 99.44 | 99.39 | 98.36 | 98.7 |
2 | 99.42 | 99.94 | 99.38 | 99.17 | 99.96 | 99.87 | 97.77 | 99.55 | 99.44 | 99.82 | 99.93 | 99.56 |
3 | 90.7 | 90.59 | 90.55 | 91.73 | 94.16 | 95.31 | 87.97 | 91.22 | 92.2 | 94.61 | 94.04 | 90.63 |
4 | 98.81 | 99.18 | 99.03 | 98.81 | 98.83 | 99.63 | 99.16 | 99.48 | 99.58 | 99.59 | 99.52 | 99.55 |
5 | 89.62 | 90.96 | 91.83 | 92.6 | 93.12 | 94.34 | 92.54 | 91.71 | 94.44 | 95.35 | 94.55 | 96.23 |
6 | 99 | 98.81 | 98.24 | 98.84 | 98.77 | 98.75 | 98.88 | 98.99 | 98.91 | 99.14 | 98.92 | 98.51 |
7 | 98.59 | 99.55 | 96.79 | 98.98 | 99.55 | 99.43 | 98.55 | 99.23 | 97.31 | 98.14 | 99.17 | 99.47 |
8 | 74.85 | 80.37 | 81.43 | 80.45 | 83.69 | 84.82 | 69.85 | 72.95 | 78.68 | 76.66 | 82.12 | 81.03 |
9 | 97.43 | 99.73 | 99 | 99.15 | 99.52 | 99.9 | 97.88 | 99.84 | 99.18 | 99.85 | 99.41 | 99.73 |
10 | 79.93 | 86.66 | 86.03 | 87.71 | 91.06 | 90.93 | 72.17 | 85.46 | 89.18 | 90.93 | 88.22 | 92.13 |
11 | 96.62 | 98.89 | 98.54 | 98.67 | 99.14 | 99.63 | 95.96 | 98.28 | 99.54 | 99.18 | 99.44 | 99.69 |
12 | 99.12 | 98.82 | 98.89 | 98.46 | 96.47 | 98.22 | 97.81 | 99.61 | 99.84 | 99.37 | 98.68 | 98.76 |
13 | 98.16 | 99.25 | 99.07 | 99.08 | 99.17 | 96.98 | 99.42 | 99.2 | 99.24 | 99.53 | 99.17 | 99.34 |
14 | 98.14 | 97.91 | 98.51 | 99.46 | 97.2 | 99.03 | 98.23 | 98.57 | 98.44 | 99.5 | 95.97 | 97.43 |
15 | 73.18 | 79.23 | 78.53 | 81.48 | 82.59 | 79.57 | 71.91 | 76.79 | 83.82 | 82.42 | 79.66 | 82.15 |
16 | 89.33 | 91.59 | 95.77 | 93.61 | 96.94 | 96.47 | 84.42 | 92.32 | 92.9 | 95.06 | 96.41 | 96.34 |
OA | 87.98 ±2.34 | 90.93 ±1.76 | 90.84 ±2.34 | 91.28 ±1.89 | 92.62 ±1.37 | 92.67 ±1.4 | 86 ±2.49 | 89.04 ±1.47 | 91.45 ±1.88 | 91.33 ±2.16 | 91.79 ±1.82 | 92.15 ±1.61 |
AA | 92.59 ±1.35 | 94.43 ±1.2 | 94.43 ±1.61 | 94.75 ±1.28 | 95.6 ±0.95 | 95.79 ±1.08 | 91.18 ±1.37 | 93.84 ±0.74 | 95.13 ±1.13 | 95.54 ±0.96 | 95.22 ±1.15 | 95.58 ±1.18 |
Kappa | 0.87 ±0.03 | 0.90 ±0.02 | 0.90 ±0.03 | 0.90 ±0.02 | 0.92 ±0.02 | 0.92 ±0.02 | 0.84 ±0.03 | 0.88 ±0.02 | 0.91 ±0.02 | 0.90 ±0.02 | 0.91 ±0.02 | 0.91 ±0.02 |
Class | Noise Rate = 40% | Noise Rate = 60% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | |
1 | 98.17 | 98.31 | 98.84 | 99.6 | 99.34 | 98.84 | 95.78 | 93.41 | 98.32 | 99.44 | 98.82 | 99.5 |
2 | 96.17 | 99.04 | 99.2 | 99.52 | 99.11 | 98.4 | 97.82 | 97.02 | 99.14 | 99.54 | 99.47 | 99.2 |
3 | 87.84 | 90.59 | 93.64 | 92.57 | 90.67 | 93.27 | 85.78 | 87.52 | 87.5 | 89.64 | 88.24 | 89.1 |
4 | 99.6 | 99.34 | 99.68 | 99.53 | 99.52 | 99.69 | 99.42 | 99.01 | 99.78 | 99.62 | 99.59 | 99.6 |
5 | 91.93 | 91.28 | 94.61 | 95.72 | 94.07 | 92.96 | 91.37 | 90.62 | 93.49 | 94.9 | 93.92 | 94.52 |
6 | 99.27 | 98.81 | 99.46 | 99.59 | 99.31 | 99.3 | 99.14 | 98.13 | 98.98 | 99.75 | 99.42 | 99.29 |
7 | 99.06 | 98.46 | 99.14 | 98.36 | 97.64 | 93.88 | 99.5 | 98.24 | 99.49 | 98.9 | 99.64 | 97.42 |
8 | 68.73 | 68.29 | 78.36 | 74.62 | 80.71 | 80.76 | 70.88 | 65.68 | 73.18 | 74.84 | 75.13 | 76.1 |
9 | 97.72 | 99.71 | 99.53 | 99.78 | 99.39 | 99.56 | 98.17 | 97.34 | 99.66 | 99.5 | 99.08 | 99.53 |
10 | 75.35 | 77.58 | 89 | 91.02 | 89.47 | 90.97 | 78.17 | 69.11 | 85.62 | 89.74 | 85.41 | 87.54 |
11 | 97.59 | 97.37 | 99.53 | 99.46 | 99.06 | 99.01 | 96.58 | 92.8 | 98.65 | 98.76 | 99.08 | 99.29 |
12 | 99.59 | 99.31 | 99.67 | 99.43 | 99.84 | 99.33 | 99 | 95.85 | 99.01 | 99.32 | 98.85 | 99.83 |
13 | 99.31 | 98.91 | 99.7 | 99.6 | 99.59 | 98.99 | 99.09 | 98.88 | 99.42 | 99.86 | 99.45 | 99.77 |
14 | 97.62 | 97.19 | 98.85 | 99.59 | 99.34 | 98.78 | 97.42 | 96.05 | 98.78 | 99.3 | 98.89 | 98.19 |
15 | 74.12 | 69.57 | 81.9 | 81.92 | 79.01 | 78.14 | 67.21 | 63.35 | 81.09 | 81.59 | 79.35 | 81.62 |
16 | 87.65 | 89.71 | 95.99 | 95.97 | 96.2 | 96.8 | 86.25 | 84.61 | 94.66 | 94 | 91.63 | 93.75 |
OA | 86.42 ±1.24 | 86.31 ±1.61 | 91.45 ±1.77 | 90.85 ±2.23 | 91.34 ±1.75 | 91.05 ±2.66 | 86 ±2.41 | 83.2 ±1.25 | 89.67 ±2.69 | 90.56 ±2.17 | 89.8 ±3.41 | 90.5 ±2.4 |
AA | 91.86 ±1.35 | 92.09 ±0.89 | 95.45 ±1.09 | 95.39 ±1.24 | 95.14 ±0.92 | 94.92 ±1.82 | 91.35 ±1.66 | 89.23 ±1.11 | 94.17 ±2.1 | 94.92 ±1.32 | 94.12 ±2.55 | 94.64 ±1.71 |
Kappa | 0.85 ±0.01 | 0.85 ±0.02 | 0.91 ±0.02 | 0.90 ±0.02 | 0.90 ±0.02 | 0.90 ±0.03 | 0.84 ±0.03 | 0.81 ±0.01 | 0.89 ±0.03 | 0.90 ±0.02 | 0.89 ±0.04 | 0.89 ±0.03 |
Class | Noise Rate = 0% | Noise Rate = 20% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | |
1 | 79.88 | 85.4 | 91.51 | 89.92 | 88.59 | 86.82 | 73.06 | 80.5 | 87.77 | 87.93 | 88.94 | 89.81 |
2 | 87.7 | 79.99 | 79.69 | 78.35 | 81.44 | 82.57 | 80.18 | 77.57 | 83.57 | 80.54 | 83.49 | 86.39 |
3 | 56.24 | 65.54 | 76.4 | 76.1 | 79.37 | 80.6 | 55.98 | 67.09 | 78.51 | 77.13 | 82.35 | 77.79 |
4 | 93.11 | 91.89 | 92 | 92.27 | 86.95 | 85.72 | 89.6 | 91.45 | 89.64 | 90.76 | 87.21 | 88.17 |
5 | 98.82 | 99.39 | 98.58 | 98.69 | 99.19 | 99.09 | 94.17 | 98.44 | 99.71 | 99.19 | 99.6 | 99.72 |
6 | 74.88 | 82.68 | 75.26 | 84.07 | 82.13 | 81.92 | 62.21 | 70.7 | 77.91 | 83.84 | 79.47 | 79.64 |
7 | 75.46 | 84.29 | 92.83 | 89.15 | 92.12 | 93.18 | 74.26 | 79.69 | 94.31 | 94.62 | 93 | 91.09 |
8 | 72.3 | 83.47 | 92.08 | 89.68 | 84.55 | 90.84 | 63.01 | 68.58 | 86.28 | 88.82 | 88.43 | 87.84 |
9 | 97.28 | 97.75 | 96.85 | 95.68 | 96.66 | 96.5 | 96.6 | 98.12 | 96.13 | 95.99 | 98.15 | 96.82 |
OA | 82.68 ±2.88 | 82.72 ±4.26 | 84.17 ±4.75 | 84.03 ±4.23 | 84.42 ±4.5 | 85.15 ±4.07 | 75.59 ±4.24 | 78.1 ±3.85 | 85.09 ±3.19 | 84.71 ±3.95 | 85.62 ±4.11 | 86.75 ±3.56 |
AA | 81.74 ±1.21 | 85.6 ±3.11 | 88.36 ±2.2 | 88.21 ±2.63 | 87.89 ±2.88 | 88.58 ±2.42 | 76.56 ±1.74 | 81.35 ±2.35 | 88.2 ±2.84 | 88.76 ±2.59 | 88.96 ±2.57 | 88.58 ±3.12 |
Kappa | 0.77 ±0.03 | 0.78 ±0.05 | 0.80 ±0.05 | 0.80 ±0.05 | 0.80 ±0.05 | 0.81 ±0.05 | 0.69 ±0.05 | 0.72 ±0.04 | 0.81 ±0.04 | 0.80 ±0.05 | 0.81 ±0.05 | 0.83 ±0.04 |
Class | Noise Rate = 40% | Noise Rate = 60% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | GIAFSL | RPCL | SSRN | DCRN | WCPN-CL | WCPN | |
1 | 71.69 | 75.13 | 89.23 | 87.88 | 90.12 | 89.66 | 70.57 | 68.25 | 86.31 | 86.99 | 87.96 | 86.45 |
2 | 84.64 | 76.15 | 81.7 | 79.39 | 83.32 | 82.93 | 82.04 | 77.54 | 77.95 | 79.36 | 79.47 | 80.5 |
3 | 60.3 | 56.93 | 74.22 | 73.23 | 77.75 | 78.25 | 52.94 | 55.66 | 75.45 | 68.22 | 79.38 | 74.28 |
4 | 89.24 | 89.9 | 92.14 | 91.59 | 91.38 | 89.67 | 89.61 | 73.44 | 90.67 | 92.68 | 90.29 | 90.05 |
5 | 95.53 | 95.49 | 99.49 | 98.97 | 99.18 | 99.81 | 95.77 | 88.11 | 99.73 | 97.68 | 99.59 | 99.45 |
6 | 59.53 | 64.48 | 79.77 | 85.52 | 77.8 | 81.35 | 54.43 | 60.23 | 75.46 | 77.52 | 78.58 | 81.66 |
7 | 81.15 | 79.9 | 95.08 | 91.68 | 95.74 | 93.41 | 79.83 | 78.74 | 92.32 | 90.69 | 92.95 | 92.58 |
8 | 61.58 | 61.17 | 86.38 | 86.5 | 86.24 | 89.43 | 61.82 | 46.6 | 81.64 | 81.14 | 82.71 | 83.05 |
9 | 96.97 | 96.86 | 97.1 | 94.7 | 97.81 | 97.87 | 96.68 | 93.97 | 97.41 | 94.43 | 98.05 | 98.81 |
OA | 77.34 ±3.48 | 74.55 ±3.79 | 84.74 ±3.23 | 83.94 ±4.83 | 85.48 ±3.47 | 85.78 ±3.89 | 75.08 ±2.88 | 70.77 ±2.72 | 81.62 ±4.21 | 82.14 ±5.52 | 83.19 ±4.81 | 83.53 ±4.09 |
AA | 77.85 ±1.61 | 77.34 ±1.31 | 88.35 ±1.75 | 87.72 ±2.14 | 88.81 ±1.82 | 89.15 ±1.83 | 75.97 ±1.54 | 71.39 ±2.42 | 86.33 ±2.74 | 85.41 ±1.99 | 87.67 ±2.08 | 87.43 ±1.77 |
Kappa | 0.70 ±0.04 | 0.67 ±0.04 | 0.80 ±0.04 | 0.80 ±0.05 | 0.81 ±0.04 | 0.82 ±0.05 | 0.68 ±0.03 | 0.62 ±0.03 | 0.77 ±0.05 | 0.77 ±0.06 | 0.79 ±0.05 | 0.79 ±0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Ren, Y.; Liu, C.; Han, Z.; Wang, J. Weighted Contrastive Prototype Network for Few-Shot Hyperspectral Image Classification with Noisy Labels. Remote Sens. 2024, 16, 3527. https://doi.org/10.3390/rs16183527
Zhang D, Ren Y, Liu C, Han Z, Wang J. Weighted Contrastive Prototype Network for Few-Shot Hyperspectral Image Classification with Noisy Labels. Remote Sensing. 2024; 16(18):3527. https://doi.org/10.3390/rs16183527
Chicago/Turabian StyleZhang, Dan, Yiyuan Ren, Chun Liu, Zhigang Han, and Jiayao Wang. 2024. "Weighted Contrastive Prototype Network for Few-Shot Hyperspectral Image Classification with Noisy Labels" Remote Sensing 16, no. 18: 3527. https://doi.org/10.3390/rs16183527
APA StyleZhang, D., Ren, Y., Liu, C., Han, Z., & Wang, J. (2024). Weighted Contrastive Prototype Network for Few-Shot Hyperspectral Image Classification with Noisy Labels. Remote Sensing, 16(18), 3527. https://doi.org/10.3390/rs16183527