A Deep-Learning-Based Method for Extracting an Arbitrary Number of Individual Power Lines from UAV-Mounted Laser Scanning Point Clouds
Abstract
:1. Introduction
- We propose an end-to-end and multi-branch network named EM-Net to automatically and efficiently extract individual power lines and power towers in point clouds collected by UAV-based laser scanners.
- In order to effectively extract an arbitrary number of individual power lines, we design a discriminative loss function into the EM-Net to automatically learn about discriminative features for differentiating the points belonging to different power lines. The learned discriminative features can easily be used in traditional unsupervised clustering algorithms to extract an arbitrary number of individual power lines.
- To assess the accuracy and robustness of our proposed EM-Net method, we conduct extensive experiments on two different datasets acquired by UAV-mounted laser scanners, and demonstrate the superiority of our proposed method in individual power line extraction.
2. Related Work
2.1. Image-Based Power Line Inspection
2.2. Point-Cloud-Based Power Line Inspection
3. Materials and Methods
3.1. An Overview of EM-Net
3.2. The Backbone Network
3.3. The Power Line and Power Tower Extraction Branch
3.4. The Individual Power Line Feature Learning Branch
3.5. An Arbitrary Number of Individual Power Line Extraction
4. Experiments
4.1. The Study Area and Dataset
4.2. Implementation Details
4.3. Experiments and Discussion
4.3.1. Evaluation Metrics
4.3.2. Individual Powerline Extraction
4.3.3. A Comparative Experiment
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matikainen, L.; Lehtomäki, M.; Ahokas, E.; Hyyppä, J.; Karjalainen, M.; Jaakkola, A.; Kukko, A.; Heinonen, T. Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 2016, 119, 10–31. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y. Application of LiDAR technology in power line inspection. IOP Conf. Ser. Mater. Sci. Eng. 2018, 382, 052025. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Q.; Xu, J.; Li, D. A review of UAV power line inspection. In Advances in Guidance, Navigation and Control; Lecture Notes in Electrical Engineering; Springer: Singapore, 2022; pp. 3147–3159. [Google Scholar]
- Guan, H.; Li, J.; Zhou, Y.; Yu, Y.; Wang, C.; Wen, C. Automatic extraction of power lines from mobile laser scanning data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Mills, S.J.; Castro, M.P.G.; Li, Z.; Cai, J.; Hayward, R.; Mejias, L.; Walker, R.A. Evaluation of aerial remote sensing techniques for vegetation management in power-line corridors. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3379–3390. [Google Scholar] [CrossRef]
- Mclaughlin, R. Extracting transmission lines from airborne LIDAR data. IEEE Geosci. Remote Sens. Lett. 2006, 3, 222–226. [Google Scholar] [CrossRef]
- Li, Z.; Walker, R.; Hayward, R.; Mejias, L. Advances in vegetation management for power line corridor monitoring using aerial remote sensing techniques. In Proceedings of the 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–6. [Google Scholar]
- Luo, Y.; Yu, X.; Yang, D.; Zhou, B. A survey of intelligent transmission line inspection based on unmanned aerial vehicle. Artif. Intell. Rev. 2023, 56, 173–201. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, L.; Chen, Y.; Chen, R.; Kong, S.; Wang, Y.; Hu, J.; Wub, J. Attention-guided multitask convolutional neural network for power line parts detection. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Xu, C.; Li, Q.; Zhou, Q.; Zhang, S.; Yu, D.; Ma, Y. Power line-guided automatic electric transmission line inspection system. IEEE Trans. Instrum. Meas. 2022, 71, 1–18. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, W.; Yu, H.; Zhang, H.; Xia, G.-S. Detecting power lines in UAV images with convolutional features and structured constraints. Remote Sens. 2019, 11, 1342. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Cong, Y.; Cao, L.; Fu, X.; Dong, Z. 3D forest mapping using a low-cost UAV laser scanning system: Investigation and comparison. Remote Sens. 2019, 11, 717. [Google Scholar] [CrossRef]
- Bi, Z.; Wang, L. Advances in 3D data acquisition and processing for industrial applications. Robot. Comput.-Integr. Manuf. 2010, 26, 403–413. [Google Scholar] [CrossRef]
- Maiellaro, N.; Zonno, M.; Lavalle, P. Laser scanner and camera-equipped UAV architectural surveys. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 381–386. [Google Scholar] [CrossRef]
- Shen, X.; Qin, C.; Du, Y.; Yu, X.; Zhang, R. An automatic extraction algorithm of high voltage transmission lines from airborne LIDAR point cloud data. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 2043–2055. [Google Scholar] [CrossRef]
- Gaha, M.; Jaafar, W.; Fakhfekh, J.; Houle, G.; Abderrazak, J.B.; Bourgeois, M. A new lidar-based approach for poles and distribution lines detection and modelling. Comput. Sci. Inf. Technol. 2021, 11, 85–97. [Google Scholar]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. Randla-net: Efficient semantic segmen-tation of large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11108–11117. [Google Scholar]
- Chen, Y.; Li, Y.; Zhang, H.; Tong, L.; Cao, Y.; Xue, Z. Automatic power line extraction from high resolution remote sensing imagery based on an improved Radon transform. Pattern Recognit. 2016, 49, 174–186. [Google Scholar] [CrossRef]
- Yetgin, Ö.E.; Gerek, Ö.N. Automatic recognition of scenes with power line wires in real life aerial images using DCT-based features. Digit. Signal Prog. 2018, 77, 102–119. [Google Scholar] [CrossRef]
- Song, B.; Li, X. Power line detection from optical images. Neurocomputing 2014, 129, 350–361. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Yao, H.; Tian, M.; Jian, Z. Power line extraction from aerial images using object-based markov random field with anisotropic weighted penalty. IEEE Access 2019, 7, 125333–125356. [Google Scholar] [CrossRef]
- Boykov, Y.; Veksler, O.; Zabih, R. Markov random fields with efficient approximations. In Proceedings of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, 23–25 June 1998; pp. 648–655. [Google Scholar]
- Chang, W.; Yang, G.; Li, E.; Liang, Z. Toward a cluttered environment for learning-based multi-scale overhead ground wire recognition. Neural Process. Lett. 2018, 48, 1789–1800. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Sarabandi, K.; Park, M. Extraction of power line maps from millimeter-wave polarimetric SAR images. IEEE Trans. Antennas Propag. 2000, 48, 1802–1809. [Google Scholar] [CrossRef]
- Ma, Q.; Goshi, D.S.; Shih, Y.-C.; Sun, M.-T. An Algorithm for Power Line Detection and Warning Based on a Millimeter-Wave Radar Video. IEEE Trans. Image Process. 2011, 20, 3534–3543. [Google Scholar] [CrossRef]
- Jung, J.; Che, E.; Olsen, M.J.; Shafer, K.C. Automated and efficient powerline extraction from laser scanning data using a voxel-based subsampling with hierarchical approach. ISPRS J. Photogramm. Remote Sens. 2020, 163, 343–361. [Google Scholar] [CrossRef]
- Xu, S.; Wang, R. Power line extraction from mobile LiDAR point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 734–743. [Google Scholar] [CrossRef]
- Guo, B.; Huang, X.; Zhang, F.; Sohn, G. Classification of airborne laser scanning data using JointBoost. ISPRS J. Photogramm. Remote Sens. 2015, 100, 71–83. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Liu, L.; Zheng, D.; Li, C.; Li, K. Supervised classification of power lines from airborne LiDAR data in urban areas. Remote Sens. 2017, 9, 771. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Z. Voxel-based extraction of transmission lines from airborne LiDAR point cloud data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3892–3904. [Google Scholar] [CrossRef]
- Hansbo, P. Generalized Laplacian smoothing of unstructured grids. Commun. Numer. Methods Eng. 1995, 11, 455–464. [Google Scholar] [CrossRef]
- De Brabandere, B.; Neven, D.; Van Gool, L. Semantic instance segmentation with a discriminative loss function. arXiv 2017, arXiv:1708.02551. [Google Scholar]
- Wu, K.-L.; Yang, M.-S. Mean shift-based clustering. Pattern Recognit. 2007, 40, 3035–3052. [Google Scholar] [CrossRef]
- Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Luo, H.; Wang, C.; Wen, C.; Chen, Z.; Zai, D.; Yu, Y.; Li, J. Semantic labeling of mobile LiDAR point clouds via active learning and higher order MRF. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3631–3644. [Google Scholar] [CrossRef]
Datasets | Precision | Recall | F1-Score |
---|---|---|---|
Split I | 0.992 | 0.979 | 0.985 |
Split II | 0.990 | 0.984 | 0.987 |
Split III | 0.985 | 0.970 | 0.978 |
Split IV | 0.981 | 0.965 | 0.973 |
Split V | 0.984 | 0.977 | 0.981 |
Avg | 0.986 | 0.975 | 0.981 |
Methods | Precision | Recall | F1-Score |
---|---|---|---|
RANSAC | 0.986 | 0.581 | 0.731 |
DBSCAN | 0.868 | 0.657 | 0.748 |
RECONSTRUCT | 0.986 | 0.941 | 0.963 |
EM-Net | 0.987 | 0.975 | 0.981 |
Loss | Precision | Recall | F1-Score |
---|---|---|---|
CE loss | 95.44 | 89.97 | 92.63 |
WCE loss | 95.11 | 96.86 | 95.97 |
Loss | Precision | Recall | F1-Score |
---|---|---|---|
EC loss | 99.52 | 98.83 | 99.17 |
WEC loss | 99.31 | 99.51 | 99.41 |
Bandwidth | Precision | Recall | F1-Score |
---|---|---|---|
0.5 | 0.983 | 0.916 | 0.949 |
0.8 | 0.995 | 0.809 | 0.893 |
1.0 | 0.967 | 0.964 | 0.965 |
1.2 | 0.973 | 0.942 | 0.957 |
1.5 | 0.974 | 0.858 | 0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Li, Q.; Zhao, J.; Zhang, C.; Zhao, G.; Li, L.; Chen, Z.; Chen, Y. A Deep-Learning-Based Method for Extracting an Arbitrary Number of Individual Power Lines from UAV-Mounted Laser Scanning Point Clouds. Remote Sens. 2024, 16, 393. https://doi.org/10.3390/rs16020393
Zhu S, Li Q, Zhao J, Zhang C, Zhao G, Li L, Chen Z, Chen Y. A Deep-Learning-Based Method for Extracting an Arbitrary Number of Individual Power Lines from UAV-Mounted Laser Scanning Point Clouds. Remote Sensing. 2024; 16(2):393. https://doi.org/10.3390/rs16020393
Chicago/Turabian StyleZhu, Sha, Qiang Li, Jianwei Zhao, Chunguang Zhang, Guang Zhao, Lu Li, Zhenghua Chen, and Yiping Chen. 2024. "A Deep-Learning-Based Method for Extracting an Arbitrary Number of Individual Power Lines from UAV-Mounted Laser Scanning Point Clouds" Remote Sensing 16, no. 2: 393. https://doi.org/10.3390/rs16020393
APA StyleZhu, S., Li, Q., Zhao, J., Zhang, C., Zhao, G., Li, L., Chen, Z., & Chen, Y. (2024). A Deep-Learning-Based Method for Extracting an Arbitrary Number of Individual Power Lines from UAV-Mounted Laser Scanning Point Clouds. Remote Sensing, 16(2), 393. https://doi.org/10.3390/rs16020393