Primary Impact Evaluation of Surface Temperature Observations for Microwave Temperature Sounding Data Assimilation over Land
Abstract
:1. Introduction
2. Data and Methods
2.1. Overview of the Study Area
2.2. Datasets
2.3. Background Field
2.4. Modified Data Assimilation System
2.5. Quality Control of Surface Observation Data
2.6. Matching AWS with Satellite Observation Points
3. Results
3.1. Evaluation of the SKT of the Background Field
3.2. Effects of SKT on BT Simulation
3.3. Impact of Terrain Elevation
4. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bouttier, F.; Courtier, P. Data Assimilation Concepts and Methods; Meteorological Training Course Lecture Series; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2002; pp. 1–59. [Google Scholar]
- Kelly, G.; Thépaut, J. Evaluation of the Impact of the Space Component of Global Observing System through Observing System Experiment; ECMWF Publication: Reading, UK, 2007; pp. 327–346. [Google Scholar]
- Eyre, J.R.; English, S.J.; Forsythe, M. Assimilation of satellite data in numerical weather prediction. Part I: The early years. Q. J. R. Meteorol. Soc. 2020, 146, 49–68. [Google Scholar] [CrossRef]
- English, S.J.; McNally, A.; Niels, B.; Kirsti, S.; Marco, M.; Andras, H.; Michael, R.; Marta, J.; Michele, S.D.; Alan, J.G.; et al. Impact of Satellite Data. In Technical Memoradum ECMWF; ECMWF: Reading, UK, 2013; p. 46. [Google Scholar]
- English, S.J.; Renshaw, R.J.; Dibben, P.C.; Smith, A.J.; Rayer, P.J.; Poulsen, C.; Saunders, F.W.; Eyre, J.R. A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecast. Q. J. R. Meteorol. Soc. 2000, 126, 2911–2931. [Google Scholar]
- Andersson, E.; Pailleux, J.; Thépaut, J.-N.; Eyre, J.R.; McNally, A.P.; Kelly, G.A.; Courtier, P. Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Q. J. R. Meteor. Soc. 1994, 120, 627–653. [Google Scholar]
- Derber, J.C.; Wu, W.-S. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Weather Rev. 1998, 126, 2287–2299. [Google Scholar] [CrossRef]
- Tomaso, E.; Bormann, N. Assimilation of ATOVS Radiances at ECMWF: First Year EUMETSAT Fellowship Report. In EUMETSAT/ECMWF Fellowship Programme Research Report 22; ECMWF: Reading, UK, 2010; p. 27. [Google Scholar]
- Bouchard, A.; Rabier, F.; Guidard, V.; Karbou, F. Enhancements of satellite data assimilation over Antarctica. Mon. Weather Rev. 2010, 138, 2149–2173. [Google Scholar] [CrossRef]
- Munchak, S.J.; Skofronick-Jackson, G. Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res. 2013, 131, 81–94. [Google Scholar] [CrossRef]
- Zou, X.; Qin, Z.; Weng, F. Impact of dawn-dusk satellite AMSU-A data on quantitative precipitation forecasts and the implications for three-orbit constellation. Chin. J. Atmos. 2016, 40, 46–62. (In Chinese) [Google Scholar] [CrossRef]
- Karbou, F.; Rabier, F.; Lafore, J.; Redelsperger, J.; Bock, O. Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part II: Impacts of assimilating surface-sensitive channels on the African monsoon during AMMA. Weather. Forecast. 2010, 25, 20–36. [Google Scholar] [CrossRef]
- Moradi, I.; Evans, K.F.; Mccarty, W. Assimilation of satellite microwave observations over the rainbands of tropical cyclones. Mon. Weather Rev. 2020, 148, 4729–4745. [Google Scholar] [CrossRef]
- Duncan, D.; Bormann, N.; Geer, A. All-sky Assimilation of AMSU-A Window Channels. In EUMETSAT/ECMWF Fellowship Programme Research Report 59; ECMWF: Reading, UK, 2022; p. 34. [Google Scholar]
- Li, J.; Zou, X. Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes. Front. Earth Sci. 2014, 8, 251–263. [Google Scholar] [CrossRef]
- Kazumori, M.; English, S. Use of the ocean surface wind direction signal in microwave radiance assimilation. Q. J. R. Meteor. Soc. 2015, 141, 1354–1375. [Google Scholar] [CrossRef]
- Krzeminski, B.; Bormann, N.; Karbou, F.; Bauer, P. Towards a better use of AMSU over land at ECMWF. In Proceedings of the 16th International TOVS Study Conference, International TOVS Working Group, Angra dos Reis, Brazil, 7–13 May 2008; pp. 157–165. [Google Scholar]
- Bormann, N.; Fouilloux, A.; Bell, W. Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atoms. 2013, 118, 12970–12980. [Google Scholar] [CrossRef]
- Geer, A.; Lonitz, K.; Duncan, D.; Bormann, N. Improved Surface Treatment for All-Sky Microwave Observations; ECMWF Technical Memorandum 894; ECMWF: Reading, UK, 2022; p. 57. [Google Scholar]
- Wang, J.; Gong, J.; Wang, R. Estimation of background error for brightness temperature in GRAPES 3DVar and its application in radiance data background quality control. Acta Meteorol. Sin. 2016, 74, 397–409. (In Chinese) [Google Scholar]
- Sobrino, J.; Raissouni, N.; Li, Z. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
- English, S. The Importance of Accurate Skin Temperature in Assimilating Radiances from Satellite Sounding Instruments. IEEE Trans. Geosci. Remote Sens. 2008, 46, 403–408. [Google Scholar] [CrossRef]
- Karbou, F.; Gérard, É.; Rabier, F. Microwave land emissivity and skin temperature for AMSU-A and -B assimilation over land. Q. J. R. Meteor. Soc. 2006, 132, 2333–2355. [Google Scholar] [CrossRef]
- Karbou, F.; Gérard, E.; Rabier, F. Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part I: Impacts of various land surface emissivity parameterizations. Weather Forecast. 2010, 25, 5–19. [Google Scholar] [CrossRef]
- Lonitz, K.; Geer, A.; Bormann, N. Towards Assimilating Surface Sensitive Microwave Channels over Land; EUMETSAT/ECMWF Fellowship Programme Research Report 58; ECMWF: Reading, UK, 2022; p. 23. [Google Scholar]
- Xing, D. The Study of Remote-Sensing Satellite Microwave Observation Data Assimilation Over Land; National University of Defense Technology: Changsha, China, 2019. (In Chinese) [Google Scholar]
- Xian, Z.; Chen, K.; Zhu, J. All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons. J. Geophys. Res. Atmos. 2019, 124, 6359–6378. [Google Scholar] [CrossRef]
- Bormann, N.; Lupu, C.; Geer, A.; Lawrence, H.; Weston, P.; English, S. Assessment of the Forecast Impact of Surface-Sensitive Microwave Radiances over Land and Sea-Ice; ECMWF Technical Memorandum 804; ECMWF: Reading, UK, 2017; p. 37. [Google Scholar]
- Zheng, W.; Wei, H.; Wang, Z.; Zeng, X.; Meng, J.; Ek, M.; Mitchell, K.; Derber, J. Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res. 2012, 117, D06117. [Google Scholar] [CrossRef]
- Qin, Z.; Zou, X. Impact of AMSU-A data assimilation over high terrains on QPFs downstream of the Tibetan Plateau. J. Meteorol. Soc. Jan. Ser. II 2019, 97, 1137–1154. [Google Scholar] [CrossRef]
- Prigent, C.; Aires, F.; Rossow, W. Land surface microwave emissivity over the globe for a decade. Bull. Am. Meteor. Soc. 2006, 87, 1573–1584. [Google Scholar] [CrossRef]
- Fu, S.; Nie, S.; Luo, Y.; Chen, X. Implications of diurnal variations in land surface temperature to data assimilation using MODIS LST data. J. Geogr. Sci. 2020, 30, 18–36. [Google Scholar] [CrossRef]
- Eyre, J.R.; Bell, W.; Cotton, J.; English, S.J.; Forsythe, M.; Healy, S.B.; Pavelin, E.G. Assimilation of satellite data in numerical weather prediction. Part II: Recent years. Q. J. R. Meteorol. Soc. 2022, 148, 521–556. [Google Scholar] [CrossRef]
- Ma, X.; He, J.; Zhou, B.; Li, L.; Ji, Y.; Guo, H. Effect of variation quality control of Non-Gaussian distribution observation error on heavy rainfall prediction. Trans. Atmos. Sci. 2017, 40, 170–180. (In Chinese) [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- Guedj, S.; Karbou, F.; Rabier, F. Land surface temperature estimation to improve the assimilation of SEVIRI radiances over land. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Prigent, C.; Jimenez, C.; Aires, F. Toward “all weather”, long record, and real-time land surface temperature retrievals from microwave satellite observations. J. Geophys. Res. Atmos. 2016, 121, 5699–5717. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Duan, S.B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Massart, S.; Bormann, N.; Bonavita, M.; Lupu, C. Multi-sensor analyses of the skin temperature for the assimilation of satellite radiances in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS, cycle 47R1). Geosci. Model Dev. 2021, 14, 5467–5485. [Google Scholar] [CrossRef]
- He, J.; Zhang, M.; Wang, P.; Wang, S.; Wang, X. Climate Characteristics of the Extreme Drought Events in Southwest China during Recent 50 Years. Acta Geogr. Sin. 2011, 66, 1179–1190. (In Chinese) [Google Scholar]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.-S.; Lord, S. Introduction of the GSI into the NCEP Global Data Assimilation System. Weather. Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef]
- Geer, A.J.; Baordo, F.; Bormann, N.; Chambon, P.; English, S.J.; Kazumori, M.; Lawrence, H.; Lean, P.; Lonitz, K.; Lupu, C. The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Q. J. R. Meteorol. Soc. 2017, 143, 3189–3206. [Google Scholar] [CrossRef]
- Weston, P.; Geer, A.; Bormann, N. Investigations into the Assimilation of AMSU-A in the Presence of Cloud and Precipitation; EUMETSAT/ECMWF Fellowship Programme Research Report 50; ECMWF: Reading, UK, 2019; p. 42. [Google Scholar]
- Duncan, D.I.; Bormann, N.; Geer, A.J.; Weston, P. Assimilation of AMSU-A in All-Sky Conditions. Mon. Weather Rev. 2022, 150, 1023–1041. [Google Scholar] [CrossRef]
SKT | Other Background Variables | |
---|---|---|
Ctrl | WRF-ARW 6 h forecast result | WRF-ARW 6 h forecast result |
Srf | AWS observation | WRF-ARW 6 h forecast result |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Qin, Z.; Li, J.; Bai, X. Primary Impact Evaluation of Surface Temperature Observations for Microwave Temperature Sounding Data Assimilation over Land. Remote Sens. 2024, 16, 395. https://doi.org/10.3390/rs16020395
Wu Y, Qin Z, Li J, Bai X. Primary Impact Evaluation of Surface Temperature Observations for Microwave Temperature Sounding Data Assimilation over Land. Remote Sensing. 2024; 16(2):395. https://doi.org/10.3390/rs16020395
Chicago/Turabian StyleWu, Yibin, Zhengkun Qin, Juan Li, and Xuesong Bai. 2024. "Primary Impact Evaluation of Surface Temperature Observations for Microwave Temperature Sounding Data Assimilation over Land" Remote Sensing 16, no. 2: 395. https://doi.org/10.3390/rs16020395
APA StyleWu, Y., Qin, Z., Li, J., & Bai, X. (2024). Primary Impact Evaluation of Surface Temperature Observations for Microwave Temperature Sounding Data Assimilation over Land. Remote Sensing, 16(2), 395. https://doi.org/10.3390/rs16020395