Estimation of Economic Spillover Effects under the Hierarchical Structure of Urban Agglomeration Based on Time-Series Night-Time Lights: A Case Study of the Pearl River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. The Long Time-Series Night-Time Light Dataset
2.2.2. Other Data
2.3. Methodology
2.3.1. Selection of the Optimal Night-Time Light Index
2.3.2. Division of Economic Structure in Urban Agglomeration Based on Network Analysis
2.3.3. Measurement of the Hierarchical Economic Spillover Effect within an Urban Agglomeration Based on the Vector Error Correction Model (VECM)
3. Results
3.1. Characterization Effect of the Night-Time Light Index on Economic Development
3.2. Hierarchical Structure within the PRD
3.3. Hierarchical Spillover Effects within the RPD
3.3.1. Analysis of Spillover Effects among Core Cities
3.3.2. Spillover Effect Analysis of Core Cities and Other Cities in Metropolitan Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balsa-Barreiro, J.; Li, Y.; Morales, A.; Pentland, A.S. Globalization and the shifting centers of gravity of world’s human dynamics: Implications for sustainability. J. Clean. Prod. 2019, 239, 117923. [Google Scholar] [CrossRef]
- Xia, Y.Y.; Guan, F.L.; Feng, C. The new connotation and significance of China’s regional coordinated development in the new era. Acad. Explor. 2022, 3, 45–53. [Google Scholar]
- Zhou, M.; Zhang, X.B. Research on the realization path and governance mechanism of regional coordinated development led by urban agglomerations—From the perspective of cycle coordination. Financ. Econ. 2023, 7, 89–106. [Google Scholar]
- Teng, L.; Cai, D.; Lu, L.C. Study on regional spillovers in economic integration. Hum. Geogr. 2010, 25, 116–119. [Google Scholar] [CrossRef]
- Teng, L. A Study on the Regional Spillovers in GIS Environment. Ph.D. Thesis, East China Normal University, Shanghai, China, 2005. [Google Scholar]
- Peng, L.Q. A Study on the Spillover-Effects of Regional Economic Growth in China. Ph.D. Thesis, Jinan University, Guangzhou, China, 2009. [Google Scholar]
- Pan, W. Regional correlation and spatial spillovers in China’s regional economic growth. Soc. Sci. China 2013, 34, 125–139. [Google Scholar] [CrossRef]
- Zhang, Q.; Felmingham, B. The role of FDI, exports and spillover effects in the regional development of China. J. Dev. Stud. 2002, 38, 157–178. [Google Scholar] [CrossRef]
- Wang, X.R.; Liu, J.Q.; Liu, D.Y. Tests on the convergence characteristics and the spatial spillover effect test of China’s provincial economic growth. World Econ. Pap. 2020, 3, 91–106. [Google Scholar]
- Wang, S.J.; Wang, Y.; Zhao, Y.B. Spatial spillover effects and multi-mechanism for regional development in Guangdong province since 1990s. Acta Geogr. Sin. 2015, 70, 965–979. [Google Scholar]
- Zhou, T. Research on the spatial spillover effect of the Yangtze River Delta urban agglomeration from the perspective of spatial interaction. Inq. Econ. Issues 2015, 6, 97–104. [Google Scholar]
- Yang, S.G.; Wang, L. Economic relevance, spatial spillover and economic growth of urban agglomeration in the Yangtze River Delta—An empirical study based on spatial panel metering model. Syst. Eng. 2017, 35, 99–109. [Google Scholar]
- Wu, C.; Zhuo, L.; Chen, Z.; Tao, H. Spatial Spillover Effect and Influencing Factors of Information Flow in Urban Agglomerations—Case Study of China Based on Baidu Search Index. Sustainability 2021, 13, 8032. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Morales, A.J.; Lois-González, R.C. Mapping Population Dynamics at Local Scales Using Spatial Networks. Complexity 2021, 2021, 8632086. [Google Scholar] [CrossRef]
- Sun, B.D.; Ding, S. Do large cities contribute to economic growth of smaller cities? Evidence from Yangtze River Delta in China. Econ. Growth 2016, 35, 1615–1625. [Google Scholar]
- Cui, B.S.; Li, J.Q. Dynamic evolution and spatial spillover effects of regional economic disparity in Yangtze River Delta: Based on the night light data. Econ. Geogr. 2022, 42, 10–18. [Google Scholar] [CrossRef]
- Isard, W. Interregional and regional input-output analysis: A model of a space-economy. Rev. Econ. Stat. 1951, 33, 318–328. [Google Scholar] [CrossRef]
- Sun, L.Y.; Luo, Y.F. Research on the spillover effects of the three growth poles on Chengdu-Chongqing economic circle. Resour. Dev. Mark. 2022, 38, 1357–1363+1373. [Google Scholar]
- Yang, H.Y.; Zhai, W.F. Dual value chain, spatial spillover and the growth of manufacturing industry. Commer. Res. 2023, 4, 38–46. [Google Scholar] [CrossRef]
- Tang, Y.F. Study on the Spillover Effects of Economic Growth among Cities in the Pan-Yangtze River Delta Economic Circle. Master’s Thesis, Shanghai Academy of Social Sciences, Shanghai, China, 2014. [Google Scholar]
- Bi, X.J.; Ning, Y.M. Empirical research on spatial spillover of metropolitan and the spatial agglomeration and dispersion in Yangtze River Delta urban agglomeration. Econ. Geogr. 2013, 33, 46–53. [Google Scholar] [CrossRef]
- Niu, F.G.; Shi, R.Y. Spatial network and spillover effect of Chinese digital economy. Big Data Res. 2023, 1–15. Available online: http://kns.cnki.net/kcms/detail/10.1321.G2.20231012.1514.010.html (accessed on 18 January 2024).
- Tang, X.X.; Xia, Q.; Chen, F. Spatial Linkage and spillover effect of regional tourism economy in Yunnan province. Areal Res. Dev. 2020, 39, 103–107. [Google Scholar]
- Abbas, K.; Butt, K.M.; Xu, D.Y.; Baz, K.; Sheraz, M.; Kharl, S.H. Dynamic prognostic interaction between social development and energy consumption optimization: Evidence from european union member countries. Energy 2023, 278, 127791. [Google Scholar] [CrossRef]
- Kismawadi, E.R. Contribution of Islamic banks and macroeconomic variables to economic growth in developing countries: Vector error correction model approach (VECM). J. Islam. Account. Bus. Res. 2023. [Google Scholar] [CrossRef]
- Liu, H.; Pei, Y.; Jia, W. Spatial differences and spillover effects of economic development of urban agglomerations in China: On DMSP/OLS nighttime light data from 1992 to 2013. Financ. Trade Res. 2017, 28, 1–12. [Google Scholar] [CrossRef]
- Luo, Z.Z. Essays on Impulse Response Inference in Vector Autoregressive Models. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA, 2023. [Google Scholar]
- Si, L.J.; Wang, C.Q. Regional economic disparity, dynamic evolution and convergence of urban agglomerations in China—Research based on nighttime light data of ten urban agglomerations. Shanghai J. Econ. 2021, 10, 38–52. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Tu, B.; Liao, X.; Li, Q.; Peng, Y.; Plaza, A. Local Semantic Feature Aggregation-Based Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Wang, G.; Zhu, P.; Tang, X.; Jia, X.; Jiao, L. Remote Sensing Object Detection Meets Deep Learning: A metareview of challenges and advances. IEEE Geosci. Remote Sens. Mag. 2023, 11, 8–44. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Gãlãţanu, C.D.; Canale, L.; Lucache, D.D.; Zissis, G. Reduction in Light Pollution by Measurements According to EN 13201 Standard. In Proceedings of the 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 18–19 October 2018; pp. 1074–1079. [Google Scholar]
- Yu, B.; Wang, C.; Gong, W.; Chen, Z.; Shi, K.; Wu, B.; Hong, Y.; Li, Q.; Wu, J. Nighttime light remote sensing and urban studies: Data, methods, applications, and prospects. Natl. Remote Sens. Bull. 2021, 25, 342–364. [Google Scholar] [CrossRef]
- Zhang, L.X.; Ren, Z.H.; Chen, B.; Gong, P.; Fu, H.; Xu, B. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020); National Tibetan Plateau/Third Pole Environment Data Center: Tibetan Plateau, China, 2021. [Google Scholar] [CrossRef]
- Huang, X.; Song, Y.; Yang, J.; Wang, W.; Ren, H.; Dong, M.; Feng, Y.; Yin, H.; Li, J. Toward accurate mapping of 30-m time-series global impervious surface area (GISA). Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102787. [Google Scholar] [CrossRef]
- Koen, E.L.; Minnaar, C.; Roever, C.L.; Boyles, J.G. Emerging threat of the 21st century lightscape to global biodiversity. Glob. Change Biol. 2018, 24, 2315–2324. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhang, Y.M. Price discovery function of the stock index futures on the basis of VECM. Manag. Rev. 2012, 24, 71–77. [Google Scholar] [CrossRef]
- Gao, T.M. Econometric Analysis Methods and Modeling: EViews Applications and Examples; Tsinghua University Press: Beijing, China, 2009; p. 568. [Google Scholar]
- Pesaran, M.H.; Shin, Y. Cointegration and speed of convergence to equilibrium. J. Econom. 1996, 71, 117–143. [Google Scholar] [CrossRef]
Night-Time Light Index | Correlation Coefficient | ||
---|---|---|---|
Original Form | Logarithmic Form | Exponential Form | |
ANL | 0.4207 *** | 0.3719 *** | 0.5054 *** |
TNL | 0.5902 *** | 0.5020 *** | 0.7305 *** |
OANL | 0.4625 *** | 0.4445 *** | 0.5592 *** |
OTNL | 0.6102 *** | 0.5072 *** | 0.7351 *** |
BANL | 0.4583 *** | 0.4190 *** | 0.5637 *** |
BTNL | 0.7242 *** | 0.5875 *** | 0.8186 *** |
Variables | ADF Value | Conclusion | Variables | ADF Value | Conclusion |
---|---|---|---|---|---|
DG | −1.280086 | Nonstationary | ΔDG | −7.951566 *** | Stationary |
FS | −3.781631 ** | Stationary | ΔFS | −9.670013 *** | Stationary |
GZ | −4.03334 ** | Stationary | ΔGZ | −10.16392 *** | Stationary |
HZ | −2.016061 | Nonstationary | ΔHZ | −7.739178 *** | Stationary |
JM | −5.817768 *** | Stationary | ΔJM | −6.86946 *** | Stationary |
SZ | −2.009127 | Nonstationary | ΔSZ | −7.972027 *** | Stationary |
ZH | −5.724712 *** | Stationary | ΔZH | −11.71143 *** | Stationary |
ZQ | 5.570180 | Nonstationary | ΔZQ | −6.15442 *** | Stationary |
ZS | −2.365444 | Nonstationary | ΔZS | −9.431122 *** | Stationary |
Lag | AIC |
---|---|
1 | 131.2009 |
2 | 130.1428 |
3 | 129.3430 * |
Hypothesized No. of Cointegration Equations | Eigenvalue | Trace Statistic | 5% Critical Value | Prob. ** |
---|---|---|---|---|
None | 0.806795 | 115.7757 | 69.81889 | 0 |
At most 1 | 0.690889 | 63.16753 | 47.85613 | 0.001 |
At most 2 | 0.336004 | 25.59779 | 29.79707 | 0.1412 |
Hypothesized No. of Cointegration Equations | Eigenvalue | Trace Statistic | 5% Critical Value | Prob. ** |
---|---|---|---|---|
None | 0.430927 | 33.82888 | 29.79707 | 0.0163 |
At most 1 | 0.335977 | 16.35275 | 15.49471 | 0.0371 |
At most 2 | 0.111366 | 3.660176 | 3.841466 | 0.0557 |
Hypothesized No. of Cointegration Equations | Eigenvalue | Trace Statistic | 5% Critical Value | Prob. ** |
---|---|---|---|---|
None | 0.539143 | 33.74471 | 29.79707 | 0.0167 |
At most 1 | 0.217961 | 8.955362 | 15.49471 | 0.3695 |
Hypothesized No. of Cointegration Equations | Eigenvalue | Trace Statistic | 5% Critical Value | Prob. ** |
---|---|---|---|---|
None | 0.344844 | 28.44688 | 29.79707 | 0.0709 |
At most one | 0.271458 | 15.33755 | 15.49471 | 0.0528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, H.; Tao, H.; Zhuo, L.; Shi, Q.; Guo, S. Estimation of Economic Spillover Effects under the Hierarchical Structure of Urban Agglomeration Based on Time-Series Night-Time Lights: A Case Study of the Pearl River Delta, China. Remote Sens. 2024, 16, 394. https://doi.org/10.3390/rs16020394
Bao H, Tao H, Zhuo L, Shi Q, Guo S. Estimation of Economic Spillover Effects under the Hierarchical Structure of Urban Agglomeration Based on Time-Series Night-Time Lights: A Case Study of the Pearl River Delta, China. Remote Sensing. 2024; 16(2):394. https://doi.org/10.3390/rs16020394
Chicago/Turabian StyleBao, Han, Haiyan Tao, Li Zhuo, Qingli Shi, and Siying Guo. 2024. "Estimation of Economic Spillover Effects under the Hierarchical Structure of Urban Agglomeration Based on Time-Series Night-Time Lights: A Case Study of the Pearl River Delta, China" Remote Sensing 16, no. 2: 394. https://doi.org/10.3390/rs16020394
APA StyleBao, H., Tao, H., Zhuo, L., Shi, Q., & Guo, S. (2024). Estimation of Economic Spillover Effects under the Hierarchical Structure of Urban Agglomeration Based on Time-Series Night-Time Lights: A Case Study of the Pearl River Delta, China. Remote Sensing, 16(2), 394. https://doi.org/10.3390/rs16020394