Variation of Satellite-Based Suspended Sediment Concentration in the Ganges–Brahmaputra Estuary from 1990 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landsat Data
2.3. MODIS Data
2.4. Hydrological Data
2.5. Atmospheric Correction of Landsat Data
2.6. TSM Inversion Model
2.7. Normalised Difference Vegetation Index (NDVI)
3. Results
3.1. Temporal-Spatial Variation in TSM in the Ganges–Brahmaputra Estuary
3.2. Temporal-Spatial Variation in NDVI
3.3. Chlorophyll and Surface Sediment Concentration in the Northern Bay of Bengal
4. Discussion
4.1. Satellite-Derived TSM in the Ganges–Brahmaputra Estuary
4.2. Effects of Hydrology on TSM in the Ganges–Brahmaputra Estuary
4.3. Land-Use Change and Its Effects on TSM in Estuaries
4.4. Chlorophyll and Surface Sediment Concentration Variation in the Northern Bay of Bengal
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodbred, S., Jr.; Kuehl, S.A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sediment. Geol. 2000, 133, 227–248. [Google Scholar] [CrossRef]
- Goodbred, S.L., Jr.; Kuehl, S.A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 2000, 28, 1083–1086. [Google Scholar] [CrossRef]
- Akter, J.; Sarker, M.H.; Popescu, I.; Roelvink, D. Evolution of the Bengal Delta and its prevailing processes. J. Coast. Res. 2016, 32, 1212–1226. [Google Scholar] [CrossRef]
- Chowdary, J.; John, N.; Gnanaseelan, C. Interannual variability of surface air-temperature over India: Impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol. 2014, 34, 416–429. [Google Scholar] [CrossRef]
- Steckler, M.S.; Nooner, S.L.; Akhter, S.H.; Chowdhury, S.K.; Bettadpur, S.; Seeber, L.; Kogan, M.G. Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J. Geophys. Res. Solid Earth 2010, 115, B08407. [Google Scholar] [CrossRef]
- Rahman, M.; Dustegir, M.; Karim, R.; Haque, A.; Nicholls, R.J.; Darby, S.E.; Nakagawa, H.; Hossain, M.; Dunn, F.E.; Akter, M. Recent sediment flux to the Ganges-Brahmaputra-Meghna delta system. Sci. Total Environ. 2018, 643, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Rudra, K. Changing river courses in the western part of the Ganga–Brahmaputra delta. Geomorphology 2014, 227, 87–100. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Deng, A.-J.; Feng, H.-C.; Wang, D.-W.; Guo, C.-S. Tide-modulated river discharge division in the Ganges-Brahmaputra-Meghna delta channel network, Bangladesh. J. Hydrol. Reg. Stud. 2023, 49, 101493. [Google Scholar] [CrossRef]
- Konkol, A.; Schwenk, J.; Katifori, E.; Shaw, J.B. Interplay of river and tidal forcings promotes loops in coastal channel networks. Geophys. Res. Lett. 2022, 49, e2022GL098284. [Google Scholar] [CrossRef]
- Yan, Z.; Tang, D. Changes in suspended sediments associated with 2004 Indian Ocean tsunami. Adv. Space Res. 2009, 43, 89–95. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Goodbred, S. Towards integrated assessment of the Ganges-Brahmaputra Delta. In Proceedings of the 5th International Conference on Asian Marine Geology, and 1st Annual Meeting of IGCP475 DeltaMAP and APN Mega-Deltas, Bangkok, Thailand, 13–18 January 2004; p. 9. [Google Scholar]
- Paszkowski, A.; Goodbred Jr, S.; Borgomeo, E.; Khan, M.S.A.; Hall, J.W. Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nat. Rev. Earth Environ. 2021, 2, 763–780. [Google Scholar] [CrossRef]
- Islam, N. Environmental Challenges to Bangladesh; Bangladesh Institute of International and Strategic Studies: Dhaka, Bangladesh, 1991. [Google Scholar]
- Jarriel, T.; Isikdogan, L.F.; Bovik, A.; Passalacqua, P. System wide channel network analysis reveals hotspots of morphological change in anthropogenically modified regions of the Ganges Delta. Sci. Rep. 2020, 10, 12823. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [Google Scholar] [CrossRef]
- Li, L.; Ni, J.; Chang, F.; Yue, Y.; Frolova, N.; Magritsky, D.; Borthwick, A.G.L.; Ciais, P.; Wang, Y.; Zheng, C.; et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 2020, 65, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Paul, A.R. Bangladesh Sundarbans: Present Status of the Environment and Biota. Diversity 2015, 7, 242–269. [Google Scholar] [CrossRef]
- Tilstone, G.H.; Angel-Benavides, I.M.; Pradhan, Y.; Shutler, J.D.; Groom, S.; Sathyendranath, S. An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea. Remote Sens. Environ. 2011, 115, 2277–2291. [Google Scholar] [CrossRef]
- Ilyina, T.; Pohlmann, T.; Lammel, G.; Sündermann, J. A fate and transport ocean model for persistent organic pollutants and its application to the North Sea. J. Mar. Syst. 2006, 63, 1–19. [Google Scholar] [CrossRef]
- Mayer, L.M.; Keil, R.G.; Macko, S.A.; Joye, S.B.; Ruttenberg, K.C.; Aller, R.C. Importance of suspended participates in riverine delivery of bioavailable nitrogen to coastal zones. Glob. Biogeochem. Cycles 1998, 12, 573–579. [Google Scholar] [CrossRef]
- Webster, T.; Lemckert, C. Sediment resuspension within a microtidal estuary/embayment and the implication to channel management. J. Coast. Res. 2002, 36, 753–759. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Gouveia, A.D.; Shetye, S.R.; Ravindran, P.; Platt, T. Biological control of surface temperature in the Arabian Sea. Nature 1991, 349, 54–56. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Hughes, T.M.; Stouffer, R.J.; Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 1998, 393, 245–249. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Cornell, S.; Randell, A.; Jickells, T. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 1995, 376, 243–246. [Google Scholar] [CrossRef]
- Abbas, N.; Subramanian, V. Erosion and sediment transport in the Ganges river basin (India). J. Hydrol. 1984, 69, 173–182. [Google Scholar] [CrossRef]
- Jha, P.K.; Subramanian, V.; Sitasawad, R. Chemical and sediment mass transfer in the Yamuna River—A tributary of the Ganges system. J. Hydrol. 1988, 104, 237–246. [Google Scholar] [CrossRef]
- Barua, D.K. Suspended sediment movement in the estuary of the Ganges-Brahmaputra-Meghna river system. Mar. Geol. 1990, 91, 243–253. [Google Scholar] [CrossRef]
- Gain, A.K.; Rahman, M.M.; Sadik, M.S.; Adnan, M.S.G.; Ahmad, S.; Ahsan, S.M.M.; Ashik-Ur-Rahman, M.; Balke, T.; Datta, D.K.; Dewan, C.; et al. Overcoming challenges for implementing nature-based solutions in deltaic environments. Insights Ganges-Brahmaputra Delta Bangladesh 2022, 17, 064052. [Google Scholar] [CrossRef]
- Mckim, H.L.; Merry, C.J.; Layman, R. Water quality monitoring using an airborne spectroradiometer. Photogramm. Eng. Remote Sens. 1984, 50, 353–360. [Google Scholar]
- Curran, P.; Wilkinson, W. Mapping the concentration and dispersion of dye from a long sea outfall using digitized aerial photography. Int. J. Remote Sens. 1985, 6, 1735–1748. [Google Scholar] [CrossRef]
- Nishat, B.; Rahman, S.M.M. Water Resources Modeling of the Ganges-Brahmaputra-Meghna River Basins Using Satellite Remote Sensing Data1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1313–1327. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Zhou, Y.; Troy, A. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int. J. Remote Sens. 2006, 27, 1177–1191. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, B.; Liu, X.; Zhou, G.; Zhao, K. Remote-sensing inversion model of surface water suspended sediment concentration based on in situ measured spectrum in Hangzhou Bay, China. Environ. Earth Sci. 2012, 67, 1669–1677. [Google Scholar] [CrossRef]
- Qiu, Z. A simple optical model to estimate suspended particulate matter in Yellow River Estuary. Opt. Express 2013, 21, 27891–27904. [Google Scholar] [CrossRef] [PubMed]
- Doxaran, D.; Cherukuru, N.; Lavender, S.J. Apparent and inherent optical properties of turbid estuarine waters: Measurements, empirical quantification relationships, and modeling. Appl. Opt. 2006, 45, 2310–2324. [Google Scholar] [CrossRef]
- Islam, M.R.; Yamaguchi, Y.; Ogawa, K. Suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh: Observation from TM and AVHRR data. Hydrol. Process. 2001, 15, 493–509. [Google Scholar] [CrossRef]
- Nechad, B.; Alvera-Azcaràte, A.; Ruddick, K.; Greenwood, N. Reconstruction of MODIS total suspended matter time series maps by DINEOF and validation with autonomous platform data. Ocean Dyn. 2011, 61, 1205–1214. [Google Scholar] [CrossRef]
- Duane Nellis, M.; Harrington, J.A.; Wu, J. Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology 1998, 21, 281–293. [Google Scholar] [CrossRef]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Satellite observations of flood-driven Mississippi River plume in the spring of 2008. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Pandey, P.; Kunte, P.D. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges–Brahmaputra Bay. Comput. Geosci. 2016, 95, 32–58. [Google Scholar] [CrossRef]
- Cai, L.; Tang, D.; Li, C. An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data. Adv. Space Res. 2015, 56, 293–303. [Google Scholar] [CrossRef]
- Islam, M.R.; Begum, S.F.; Yamaguchi, Y.; Ogawa, K. Distribution of suspended sediment in the coastal sea off the Ganges–Brahmaputra River mouth: Observation from TM data. J. Mar. Syst. 2002, 32, 307–321. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Sahoo, B.; Tiwari, M.K. MODIS-Landsat fusion-based single-band algorithms for TSS and turbidity estimation in an urban-waste-dominated river reach. Water Res. 2022, 224, 119082. [Google Scholar] [CrossRef]
- Islam, M.S. Perspectives of the coastal and marine fisheries of the Bay of Bengal, Bangladesh. Ocean Coast. Manag. 2003, 46, 763–796. [Google Scholar] [CrossRef]
- Joy, M.A.R.; Upaul, S.; Fatema, K.; Amin, F.M.R. Application of GIS and remote sensing in morphometric analysis of river basin at the south-western part of great Ganges delta, Bangladesh. Hydrol. Res. 2023, 54, 739–755. [Google Scholar] [CrossRef]
- Khandu; Awange, J.L.; Kuhn, M.; Anyah, R.; Forootan, E. Changes and variability of precipitation and temperature in the Ganges-Brahmaputra-Meghna River Basin based on global high-resolution reanalyses. Int. J. Climatol. 2017, 37, 2141–2159. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Ward, N. Hydro-meteorological variability in the greater Ganges–Brahmaputra–Meghna basins. Int. J. Climatol. A J. R. Meteorol. Soc. 2004, 24, 1495–1508. [Google Scholar] [CrossRef]
- Chowdhury, M.R. Flood monitoring in Bangladesh: Experience from normal and catastrophic floods. J. Jpn. Assoc. Hydrol. Sci. 1996, 26, 241–252. [Google Scholar]
- U.S. Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 4 September 2022).
- Collection 2 Tiers. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2?qt-science_support_page_related_con=1#qt-science_support_page_related_con. (accessed on 7 September 2023).
- SatCO2. Available online: https://www.satco2.com/ (accessed on 30 August 2023).
- He, X.; Bai, Y.; Pan, D.; Zhu, Q. The atmospheric correction algorithm for HY-1B/COCTS. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, Guangzhou, China, 28–29 June 2008; pp. 387–398. [Google Scholar]
- Bai, Y.; Jiang, L.; He, X.; Barale, V. An Introduction to Optical Remote Sensing of the Asian Seas: Chinese Dedicated Satellites and Data Processing Techniques. In Remote Sensing of the Asian Seas; Barale, V., Gade, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 61–79. [Google Scholar]
- Tassan, S. An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters. Int. J. Remote Sens. 1993, 14, 1221–1229. [Google Scholar] [CrossRef]
- Grimaldi, S.; Salamon, P.; Disperati, J.; Zsoter, E.; Russo, C.; Ramos, A.; Carton De Wiart, C.; Barnard, C.; Hansford, E.; Gomes, G.; et al. River Discharge and Related Historical Data from the Global Flood Awareness System. v4.0. European Commission, Joint Research Centre (JRC). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical (accessed on 17 August 2023).
- GPCP Version 3.2 Satellite-Gauge (SG) Combined Precipitation Data Set. Available online: https://disc.gsfc.nasa.gov/datacollection/GPCPMON_3.2.html (accessed on 17 August 2023).
- Earth Data Search Platform. Available online: https://search.earthdata.nasa.gov/search (accessed on 30 August 2023).
- IOCCG. Atmospheric Correction for Remotely-Sensed Ocean-Colour Products; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2010; Volume 78. [Google Scholar]
- Green, M.O.; Coco, G. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Lian, G.; Bai, Y.; Yang, Y.; Gong, F.; Wang, D.; Zhang, Z.; Li, T.; Jin, X. Monitoring and spatial traceability of river water quality using Sentinel-2 satellite images. Sci. Total Environ. 2023, 894, 164862. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Pan, D.; Bai, Y.; Mao, Z.; Gong, F. General exact Rayleigh scattering look-up-table for ocean color remote sensing. Remote Sens. Mar. Environ. 2006, 6406, 319–328. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Zhu, Q.; Gong, F. A vector radiative transfer model of coupled ocean–atmosphere system using matrix-operator method for rough sea-surface. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1426–1448. [Google Scholar] [CrossRef]
- Wang, M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations. Appl. Opt. 2007, 46, 1535–1547. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef]
- Schmidt, G.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; No. 2013-1057; US Geological Survey: Reston, VA, USA, 2013; p. 27. [Google Scholar]
- Vermote, E.; Roger, J.C.; Franch, B.; Skakun, S. LaSRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8173–8176. [Google Scholar]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef]
- Ciancia, E.; Campanelli, A.; Lacava, T.; Palombo, A.; Pascucci, S.; Pergola, N.; Pignatti, S.; Satriano, V.; Tramutoli, V. Modeling and Multi-Temporal Characterization of Total Suspended Matter by the Combined Use of Sentinel 2-MSI and Landsat 8-OLI Data: The Pertusillo Lake Case Study (Italy). Remote Sens. 2020, 12, 2147. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Jayaram, C.; Roy, R.; Chacko, N.; Swain, D.; Punnana, R.; Bandyopadhyay, S.; Choudhury, S.B.; Dutta, D. Anomalous Reduction of the Total Suspended Matter During the COVID-19 Lockdown in the Hooghly Estuarine System. Front. Mar. Sci. 2021, 8, 633493. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Das, S.; Das, I.; Giri, S.; Chanda, A.; Maity, S.; Lotliker, A.A.; Kumar, T.S.; Akhand, A.; Hazra, S. Chromophoric dissolved organic matter (CDOM) variability over the continental shelf of the northern Bay of Bengal. Oceanologia 2017, 59, 271–282. [Google Scholar] [CrossRef]
- Patel, B.; Prajapati, A.; Sarangi, R.K.; Devliya, B.; Patel, H. Validation of the Total Suspended Matter (TSM) algorithm using in situ datasets over the Bay of Bengal Coastal Water. Mar. Geod. 2023, 46, 548–561. [Google Scholar] [CrossRef]
- Chacko, N.; Jayaram, C. Variability of Total Suspended Matter in the Northern Coastal Bay of Bengal as Observed from Satellite Data. J. Indian Soc. Remote Sens. 2017, 45, 1077–1083. [Google Scholar] [CrossRef]
- Pitchaikani, J.S.; Ramakrishnan, R.; Bhaskaran, P.K.; Ilangovan, D.; Rajawat, A.S. Development of Regional Algorithm to Estimate Suspended Sediment Concentration (SSC) Based on the Remotely Sensed Reflectance and Field Observations for the Hooghly Estuary and West Bengal Coastal Waters. J. Indian Soc. Remote Sens. 2019, 47, 177–183. [Google Scholar] [CrossRef]
- Ray, R.; Baum, A.; Rixen, T.; Gleixner, G.; Jana, T.K. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci. Total Environ. 2018, 621, 535–547. [Google Scholar] [CrossRef]
- Das, S.; Hazra, S.; Giri, S.; Das, I.; Chanda, A.; Akhand, A.; Maity, S. Light Absorption Characteristics of Chromophoric Dissolved Organic Matter (CDOM) in the Coastal Waters of Northern Bay of Bengal during Winter Season. 2017. Available online: https://nopr.niscpr.res.in/handle/123456789/41675 (accessed on 30 December 2023).
- Das, S.; Hazra, S.; Lotlikar, A.A.; Das, I.; Giri, S.; Chanda, A.; Akhand, A.; Maity, S.; Kumar, T.S. Delineating the relationship between chromophoric dissolved organic matter (CDOM) variability and biogeochemical parameters in a shallow continental shelf. Egypt. J. Aquat. Res. 2016, 42, 241–248. [Google Scholar] [CrossRef]
- Ray, R.; Rixen, T.; Baum, A.; Malik, A.; Gleixner, G.; Jana, T.K. Distribution, sources and biogeochemistry of organic matter in a mangrove dominated estuarine system (Indian Sundarbans) during the pre-monsoon. Estuar. Coast. Shelf Sci. 2015, 167, 404–413. [Google Scholar] [CrossRef]
- Arora, C.; Bhaskaran, P.K. Numerical Modeling of Suspended Sediment Concentration and Its Validation for the Hooghly Estuary, India. Coast. Eng. J. 2013, 55, 1–23. [Google Scholar] [CrossRef]
- Chauhan, O.S.; Dayal, A.M.; Basavaiah, N.; Kader, U.S.A. Indian summer monsoon and winter hydrographic variations over past millennia resolved by clay sedimentation. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Halder, A.; Mowla Chowdhury, R. Evaluation of the river Padma morphological transition in the central Bangladesh using GIS and remote sensing techniques. Int. J. River Basin Manag. 2023, 21, 21–35. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, D.; Gong, F.; He, X.; Bai, Y. A Study on the Flux of Total Suspended Matter in the Padma River in Bangladesh Based on Remote-Sensing Data. Water 2021, 13, 2373. [Google Scholar] [CrossRef]
- Jian, J.; Webster, P.J.; Hoyos, C.D. Large-scale controls on Ganges and Brahmaputra river discharge on intraseasonal and seasonal time-scales. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2009, 135, 353–370. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Chlorophyll, calcite, and suspended sediment concentrations in the Bay of Bengal and the Arabian Sea at the river mouths. Adv. Space Res. 2010, 45, 61–69. [Google Scholar] [CrossRef]
- Eysink, W. Basic Considerations on the Morphology and Land Accretion Potentials in the Estuary of the Lower Meghna River; Land Reclamation Project; Bangladesh Water Development Board: Dhaka, Bangladesh, 1983. [Google Scholar]
- Lacy, J.R.; Schoellhamer, D.H.; Burau, J.R. Suspended-solids flux at a shallow-water site in South San Francisco Bay. In Proceedings of the North American Water and Environment Congress, Anaheim, CA, USA, 22–28 June 1996. [Google Scholar]
- Barua, D.K.; Kana, T.W. Deep water wave hindcasting, wave refraction modeling, and wind and wave induced motions in the east Ganges-Brahmaputra delta coast. J. Coast. Res. 1995, 11, 834–848. [Google Scholar]
- Sarma, V.V.S.S.; Paul, Y.S.; Vani, D.G.; Murty, V.S.N. Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal. Cont. Shelf Res. 2015, 107, 132–140. [Google Scholar] [CrossRef]
- Islam, M.N.; Parvez, M.P. Predicting the El Niño and La Niño impact on the coastal zones at the Bay of Bengal and the likelihood of weather patterns in Bangladesh. Model. Earth Syst. Environ. 2020, 6, 1823–1839. [Google Scholar] [CrossRef]
- Clift, P.D.; Jonell, T.N. Monsoon controls on sediment generation and transport: Mass budget and provenance constraints from the Indus River catchment, delta and submarine fan over tectonic and multimillennial timescales. Earth-Sci. Rev. 2021, 220, 103682. [Google Scholar] [CrossRef]
- Haridas, N.V.; Banerji, U.S.; Maya, K.; Padmalal, D. Paleoclimatic and paleoceanographic records from the Bay of Bengal sediments during the last 30 ka. J. Asian Earth Sci. 2022, 229, 105169. [Google Scholar] [CrossRef]
- Panmei, C.; Naidu, P.D.; Naik, S.S. Variability of terrigenous input to the Bay of Bengal for the last ~80 kyr: Implications on the Indian monsoon variability. Geo-Mar. Lett. 2018, 38, 341–350. [Google Scholar] [CrossRef]
- Raff, J.L.; Goodbred, S.L.; Pickering, J.L.; Sincavage, R.S.; Ayers, J.C.; Hossain, M.S.; Wilson, C.A.; Paola, C.; Steckler, M.S.; Mondal, D.R.; et al. Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts. Nat. Commun. 2023, 14, 2429. [Google Scholar] [CrossRef] [PubMed]
- Evans, G. Deltas: The fertile dustbins of the continents. Proc. Geol. Assoc. 2012, 123, 397–418. [Google Scholar] [CrossRef]
- Goswami, G.; Mandal, S.; Basack, S.; Mukherjee, R.; Karakouzian, M. Assessing the Impacts of Land Use and Land Cover Changes on the Water Quality of River Hooghly, West Bengal, India: A Case Study. Hydrology 2023, 10, 71. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Cui, S.; Islam, I.; Xu, L.; Tang, J. Future Impact of Land Use/Land Cover Changes on Ecosystem Services in the Lower Meghna River Estuary, Bangladesh. Sustainability 2020, 12, 2112. [Google Scholar] [CrossRef]
- Syed, Z.H.; Choi, G.; Byeon, S. A Numerical Approach to Predict Water Levels in Ungauged Regions—Case Study of the Meghna River Estuary, Bangladesh. Water 2018, 10, 110. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Hafsa, B. Multi-decadal land cover change analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and remote sensing based approach. Glob. Ecol. Conserv. 2022, 37, e02151. [Google Scholar] [CrossRef]
- Krauss, K.W.; Allen, J.A.; Cahoon, D.R. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar. Coast. Shelf Sci. 2003, 56, 251–259. [Google Scholar] [CrossRef]
- Chaudhuri, P.; Chaudhuri, S.; Ghosh, R. The role of mangroves in coastal and estuarine sedimentary accretion in Southeast Asia. In Sedimentary Processes—Examples from Asia, Turkey and Nigeria; IntechOpen: London, UK, 2019; pp. 203–218. [Google Scholar] [CrossRef]
- Dunn, F.E.; Nicholls, R.J.; Darby, S.E.; Cohen, S.; Zarfl, C.; Fekete, B.M. Projections of historical and 21st century fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Sci. Total Environ. 2018, 642, 105–116. [Google Scholar] [CrossRef]
- Chellamani, P.; Singh, C.P.; Panigrahy, S. Assessment of the health status of Indian mangrove ecosystems using multi temporal remote sensing data. Trop. Ecol. 2014, 55, 245–253. [Google Scholar]
- Shimu, S.A.; Aktar, M.; Afjal, M.I.; Nitu, A.M.; Uddin, M.P.; Mamun, M.A. NDVI Based Change Detection in Sundarban Mangrove Forest Using Remote Sensing Data. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 20–22 December 2019; pp. 1–5. [Google Scholar]
- Kumar, M.; Mondal, I.; Pham, Q.B. Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019. Acta Geophys. 2021, 69, 561–577. [Google Scholar] [CrossRef]
- Hussain, M.G.; Failler, P.; Karim, A.A.; Alam, M.K. Major opportunities of blue economy development in Bangladesh. J. Indian Ocean Reg. 2018, 14, 88–99. [Google Scholar] [CrossRef]
- Manna, S.; Mondal, P.P.; Mukhopadhyay, A.; Akhand, A.; Hazra, S.; Mitra, D. Vegetation Cover Change Analysis from Multi-temporal Satellite Data in Jharkhali Island, Sundarbans, India. 2013. Available online: https://nopr.niscpr.res.in/handle/123456789/19662 (accessed on 28 September 2023).
- Crawford, T.W.; Islam, M.S.; Rahman, M.K.; Paul, B.K.; Curtis, S.; Miah, M.G.; Islam, M.R. Coastal Erosion and Human Perceptions of Revetment Protection in the Lower Meghna Estuary of Bangladesh. Remote Sens. 2020, 12, 3108. [Google Scholar] [CrossRef]
- Bera, R.; Maiti, R. Quantitative analysis of erosion and accretion (1975–2017) using DSAS—A study on Indian Sundarbans. Reg. Stud. Mar. Sci. 2019, 28, 100583. [Google Scholar] [CrossRef]
- Raju, R.M.; Nayak, R.K.; Mulukutla, S.; Mohanty, P.C.; Manche, S.S.; Seshasai, M.V.R.; Dadhwal, V.K. Variability of the thermal front and its relationship with Chlorophyll-a in the north Bay of Bengal. Reg. Stud. Mar. Sci. 2022, 56, 102700. [Google Scholar] [CrossRef]
- Madhupratap, M.; Gauns, M.; Ramaiah, N.; Kumar, S.P.; Muraleedharan, P.; De Sousa, S.; Sardessai, S.; Muraleedharan, U. Biogeochemistry of the Bay of Bengal: Physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 881–896. [Google Scholar] [CrossRef]
- Varkey, M.; Murty, V.; Suryanarayana, A. Physical oceanography of the Bay of Bengal and Andaman Sea. Oceanogr. Mar. Biol. Annu. Rev. 1996, 34, 1–70. [Google Scholar]
- Muraleedharan, K.R.; Jasmine, P.; Achuthankutty, C.T.; Revichandran, C.; Dinesh Kumar, P.K.; Anand, P.; Rejomon, G. Influence of basin-scale and mesoscale physical processes on biological productivity in the Bay of Bengal during the summer monsoon. Prog. Oceanogr. 2007, 72, 364–383. [Google Scholar] [CrossRef]
- Watanabe, H.; Ito, M.; Matsumoto, A.; Arakawa, H. Effects of sediment influx on the settlement and survival of canopy-forming macrophytes. Sci. Rep. 2016, 6, 18677. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, O.S.; Rajawat, A.; Pradhan, Y.; Suneethi, J.; Nayak, S. Weekly observations on dispersal and sink pathways of the terrigenous flux of the Ganga–Brahmaputra in the Bay of Bengal during NE monsoon. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 2018–2030. [Google Scholar] [CrossRef]
- Qasim, S. Biological Productivity of the Indian Ocean. 1977. Available online: https://nopr.niscpr.res.in/handle/123456789/39365 (accessed on 5 October 2023).
- Gupta, R.S.; De Sousa, S.; Joseph, T. On Nitrogen and Phosphorus in the Western Bay of Bengal. 1977. Available online: https://nopr.niscpr.res.in/handle/123456789/39361 (accessed on 5 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Mei, T.; Chen, X. Variation of Satellite-Based Suspended Sediment Concentration in the Ganges–Brahmaputra Estuary from 1990 to 2020. Remote Sens. 2024, 16, 396. https://doi.org/10.3390/rs16020396
Yang H, Mei T, Chen X. Variation of Satellite-Based Suspended Sediment Concentration in the Ganges–Brahmaputra Estuary from 1990 to 2020. Remote Sensing. 2024; 16(2):396. https://doi.org/10.3390/rs16020396
Chicago/Turabian StyleYang, Hanquan, Tianshen Mei, and Xiaoyan Chen. 2024. "Variation of Satellite-Based Suspended Sediment Concentration in the Ganges–Brahmaputra Estuary from 1990 to 2020" Remote Sensing 16, no. 2: 396. https://doi.org/10.3390/rs16020396
APA StyleYang, H., Mei, T., & Chen, X. (2024). Variation of Satellite-Based Suspended Sediment Concentration in the Ganges–Brahmaputra Estuary from 1990 to 2020. Remote Sensing, 16(2), 396. https://doi.org/10.3390/rs16020396