Using Advanced InSAR Techniques and Machine Learning in Google Earth Engine (GEE) to Monitor Regional Black Soil Erosion—A Case Study of Yanshou County, Heilongjiang Province, Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. InSAR Data
2.2.2. Other Datasets
2.3. Study Framework and Methods
2.3.1. Acquisition of Long-Term Surface Deformation and Velocity with Interferometry Synthetic Aperture Radar (InSAR) Technique
Acquisition of Surface Deformation Change with D-InSAR
Acquisition of Deformation Velocity with SBAS-InSAR
2.3.2. Erosion Susceptibility Analysis with Machine Learning in Google Earth Engine (GEE)
Modules | Feature | Description | Calculation Method |
---|---|---|---|
RUSLE Figure 3 | R | Precipitation erosion | [69] |
K | Soil erosion | [70] | |
LS | Topographic | [71] | |
C | Vegetation cover and management | [72] | |
P | Soil and water conservation measures | [73] | |
Double Logistic Growth | SOS | Start of growth season (day) | [74,75,76] |
LOS | Lasting of growth season (days) | ||
EOS | End of growth season (day) |
2.3.3. Software and Google Earth Engine Cloud Platform
3. Results
3.1. Calculation of Multi-Year and Single-Year Shape Variables in Yanshou County Using D-InSAR
3.2. Calculation of Cumulative Deformation Rate Changes in Yanshou County Using SBAS-InSAR
3.3. Statistical Analysis of Deformation Rate in Residential and Planting Regions
3.4. Analysis of the Drivers of Deformation in Yanshou County
3.5. Erosion Susceptibility Analysis for Yanshou County
4. Discussion
4.1. Multi-Year and Single-Year Deformation Attribution Analysis in Yanshou County
4.2. Mechanisms and Drivers of Regional Deformation Rate Changes
4.3. Implications of Erosion Susceptibility Analyses for Regional Black Soil Conservation
4.4. Shortcomings and Prospects of Using InSAR Technology to Monitor Soil Erosion in the BSR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 2015, 83, 29–39. [Google Scholar] [CrossRef]
- Yadav, D.; Vishwakarma, A.K.; Sharma, N.K.; Biswas, A.K.; Ojasvi, P.R.; Kumar, D.; Kumawat, A.; Singh, D. Sustaining the properties of black soil in Central India through crop residue management in a conservation-agriculture-based soybean–wheat system. Land Degrad. Dev. 2021, 32, 2906–2921. [Google Scholar] [CrossRef]
- Liu, X.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Zhu, P.; Wei, D.; Jin, J.; Liu, X.; Wang, G. Long-term manure addition reduces diversity and changes community structure of diazotrophs in a neutral black soil of northeast China. J. Soils Sediments 2018, 18, 2053–2062. [Google Scholar] [CrossRef]
- Wang, B.; Hao, J.; Meng, D.; Li, W.; Yuan, Q. Methods of land consolidation in chernozems region of China. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2008, 24, 44–48. [Google Scholar]
- Zhu, G.; Tang, Z.; Shangguan, Z.; Peng, C.; Deng, L. Factors affecting the spatial and temporal variations in soil erodibility of China. J. Geophys. Res. Earth Surf. 2019, 124, 737–749. [Google Scholar] [CrossRef]
- FAO. Global Status of Black Soils; FAO: Rome, Italy, 2022. [Google Scholar]
- Tang, J.; Liu, G.; Xie, Y.; Wu, Y.; Wang, D.; Gao, Y.; Meng, L. Effect of topographic variations and tillage methods on gully erosion in the black soil region: A case-study from Northeast China. Land Degrad. Dev. 2022, 33, 3786–3800. [Google Scholar] [CrossRef]
- An, J.; Zheng, F.; Wang, B. Using 137Cs technique to investigate the spatial distribution of erosion and deposition regimes for a small catchment in the black soil region, Northeast China. CATENA 2014, 123, 243–251. [Google Scholar] [CrossRef]
- Fang, H. Impacts of land use and soil conservation measures on runoff and soil loss from two contrasted soils in the black soil region, northeastern China. Hydrol. Process. 2023, 37, e14886. [Google Scholar] [CrossRef]
- Saez, J.L.; Corona, C.; Stoffel, M.; Rovéra, G.; Astrade, L.; Berger, F. Mapping of erosion rates in marly badlands based on a coupling of anatomical changes in exposed roots with slope maps derived from LiDAR data. Earth Surf. Process. Landf. 2011, 36, 1162–1171. [Google Scholar] [CrossRef]
- Li, P.; Hao, M.; Hu, J.; Gao, C.; Zhao, G.; Chan, F.K.S.; Gao, J.; Dang, T.; Mu, X. Spatiotemporal Patterns of Hillslope Erosion Investigated Based on Field Scouring Experiments and Terrestrial Laser Scanning. Remote Sens. 2021, 13, 1674. [Google Scholar] [CrossRef]
- Imamoglu, A.; Dengiz, O. Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rend. Fis. Acc. Lincei 2016, 28, 11–23. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Yang, J.; Pu, L.; Yang, C.; Yu, L.; Chang, L.; Bu, K. Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China. Sustainability 2016, 8, 317. [Google Scholar] [CrossRef]
- Yang, X.M.; Zhang, X.P.; Deng, W.; Fang, H.J. Black soil degradation by rainfall erosion in Jilin, China. Land Degrad. Dev. 2003, 14, 409–420. [Google Scholar] [CrossRef]
- Diodato, N.; Borrelli, P.; Fiener, P.; Bellocchi, G.; Romano, N. Discovering historical rainfall erosivity with a parsimonious approach: A case study in Western Germany. J. Hydrol. 2017, 544, 1–9. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Krysanova, V.; Müller-Wohlfeil, D.-I.; Becker, A. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol. Model. 1998, 106, 261–289. [Google Scholar] [CrossRef]
- Gassman, P.W.; Williams, J.R.; Wang, X.; Saleh, A.; Osei, E.; Hauck, L.M.; Izaurralde, R.C.; Flowers, J.D. Invited Review Article: The Agricultural Policy/Environmental eXtender (APEX) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses. Trans. ASABE 2010, 53, 711–740. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W.; Green, C.H. History of model development at Temple, Texas. Hydrol. Sci. J. 2008, 53, 948–960. [Google Scholar] [CrossRef]
- Fang, H. Impact of Land Use Change and Dam Construction on Soil Erosion and Sediment Yield in the Black Soil Region, Northeastern China. Land Degrad. Dev. 2017, 28, 1482–1492. [Google Scholar] [CrossRef]
- Lieskovský, J.; Kenderessy, P. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: A case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degrad. Dev. 2014, 25, 288–296. [Google Scholar] [CrossRef]
- DeRoo, A.P.J.; Wesseling, C.G.; Ritsema, C.J. LISEM: A single-event physically based hydrological and soil erosion model for drainage basins. I: Theory, input and output. Hydrol. Process. 1996, 10, 1107–1117. [Google Scholar] [CrossRef]
- Jetten, V.; Govers, G.; Hessel, R. Erosion models: Quality of spatial predictions. Hydrol. Process. 2003, 17, 887–900. [Google Scholar] [CrossRef]
- Li, X.R.; Wang, X.P.; Li, T.; Zhang, J.G. Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Biol. Fertil. Soils 2002, 35, 147–154. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Vieira, D. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan-Morgan-Finney models. Land Degrad. Dev. 2010, 21, 58–67. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. A comparative study of soil erosion modelling by MMF, USLE and RUSLE. Geocarto Int. 2018, 33, 89–103. [Google Scholar] [CrossRef]
- Wei, J.-B.; Xiao, D.-N.; Zhang, X.-Y.; Li, X.-Y. Topography and land use effects on the spatial variation of soil organic carbon: A case study in a typical small watershed of the black soil region in northeast China. Eurasian Soil Sci. 2018, 41, 39–47. [Google Scholar] [CrossRef]
- Sankey, J.B.; Sankey, T.T.; Li, J.; Ravi, S.; Wang, G.; Caster, J.; Kasprak, A. Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sens. Environ. 2020, 253, 112223. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Pu, L.; Yang, J.; Yang, C.; Chen, J.; Guan, C.; Wang, Q.; Chen, D.; Fu, B.; et al. Gully Erosion Mapping and Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China. ISPRS Int. J. Geo-Inf. 2016, 5, 200. [Google Scholar] [CrossRef]
- Barbiéro, L.; Parate, H.R.; Descloitres, M.; Bost, A.; Furian, S.; Kumar, M.M.; Kumar, C.; Braun, J.-J. Using a structural approach to identify relationships between soil and erosion in a semi-humid forested area, South India. CATENA 2007, 70, 313–329. [Google Scholar] [CrossRef]
- Dai, T.; Wang, L.; Li, T.; Qiu, P.; Wang, J. Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed. Sustainability 2022, 14, 8284. [Google Scholar] [CrossRef]
- Wang, R.; Sun, H.; Yang, J.; Zhang, S.; Fu, H.; Wang, N.; Liu, Q. Quantitative Evaluation of Gully Erosion Using Multitemporal UAV Data in the Southern Black Soil Region of Northeast China: A Case Study. Remote Sens. 2022, 14, 1479. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Monachou, S.; Skoulikaris, C.; Kalopesa, E.; Zalidis, G.C. Investigation of the temporal relation of remotely sensed coastal water quality with GIS modelled upstream soil erosion. Hydrol. Process. 2014, 29, 2373–2384. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, P.; Dong, S.; Liu, Y.; Pan, Y.; Li, C. Extraction of Cropland Spatial Distribution Information Using Multi-Seasonal Fractal Features: A Case Study of Black Soil in Lishu County, China. Agriculture 2023, 13, 486. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Rodriguez, E.; Martin, J. Theory and design of interferometric synthetic aperture radars. IEE Proc. F Radar Signal Process. 1992, 139, 147–159. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ. 2005, 98, 284–303. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Rajaneesh, A.; Logesh, N.; Vishnu, C.L.; Bouali, E.H.; Oommen, T.; Midhuna, V.; Sajinkumar, K.S. Monitoring and Mapping of Shallow Landslides in a Tropical Environment Using Persistent Scatterer Interferometry: A Case Study from the Western Ghats, India. Geomatics 2020, 1, 3–17. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 2014, 9, 084010. [Google Scholar] [CrossRef]
- Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour. Res. 2001, 37, 1551–1566. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Alonso-Rodriguez, A.; Subramanian, S.S.; Li, W.; Zheng, G.; Dong, X.; Huang, R. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response. Landslides 2019, 16, 1003–1020. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2014, 155, 366–376. [Google Scholar] [CrossRef]
- Jonsson, S.; Zebker, H.; Segall, P.; Amelung, F. Fault slip distribution of the 1999 M-w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Wen, Y.; Wang, R. Coseismic Slip Distribution of the 2008 Mw 7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data. Bull. Seism. Soc. Am. 2010, 100, 2736–2749. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q.; de la Fuente, J. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Du, Z.; Gao, B.; Ou, C.; Du, Z.; Yang, J.; Batsaikhan, B.; Dorjgotov, B.; Yun, W.; Zhu, D. A Quantitative Analysis of Factors Influencing Organic Matter Concentration in the Topsoil of Black Soil in Northeast China Based on Spatial Heterogeneous Patterns. ISPRS Int. J. Geo-Inf. 2021, 10, 348. [Google Scholar] [CrossRef]
- Xiong, Z.; Feng, G.; He, L.; Wang, H.; Wei, J. Reactivation/Acceleration of Landslides Caused by the 2018 Baige Landslide-Dammed Lake and its Breach Floods Revealed by InSAR and Optical Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1656–1672. [Google Scholar] [CrossRef]
- Pooja, B.; Oommen, T.; Sajinkumar, K.S.; Nair, A.G.; Rajaneesh, A.; Aswathi, J.; Bouali, E.H.; Thrivikramji, K.P. Correspondence of PSInSAR monitoring and Settle3 modelling at Cochin International Airport, SW India. Appl. Geomat. 2021, 13, 735–746. [Google Scholar] [CrossRef]
- Sun, Q.; Jiang, L.; Jiang, M.; Lin, H.; Ma, P.; Wang, H. Monitoring Coastal Reclamation Subsidence in Hong Kong with Distributed Scatterer Interferometry. Remote Sens. 2018, 10, 1738. [Google Scholar] [CrossRef]
- Gong, W.; Darrow, M.M.; Meyer, F.J.; Daanen, R.P. Reconstructing movement history of frozen debris lobes in northern Alaska using satellite radar interferometry. Remote Sens. Environ. 2018, 221, 722–740. [Google Scholar] [CrossRef]
- Lei, Y.; Treuhaft, R.; Keller, M.; Dos-Santos, M.; Gonçalves, F.; Neumann, M. Quantification of selective logging in tropical forest with spaceborne SAR interferometry. Remote Sens. Environ. 2018, 211, 167–183. [Google Scholar] [CrossRef]
- Aswathi, J.; Sajinkumar, K.S.; Rajaneesh, A.; Oommen, T.; Bouali, E.H.; Binoj Kumar, R.B.; Rani, V.R.; Thomas, J.; Thrivikramji, K.P.; Ajin, R.S.; et al. Furthering the precision of RUSLE soil erosion with PSInSAR data: An innovative model. Geocarto International 2022, 37, 16108–16131. [Google Scholar] [CrossRef]
- Tong, Y.; Zhijie, Z.; Xiaoke, W. Feasibility Study on Monitoring Soil Erosion Using Persistent Scatterer Synthetic Aperture Radar Interferometry Technology. Trans. Chinese Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 127–134. [Google Scholar]
- Dong, Y.; Wu, Y.; Qin, W.; Guo, Q.; Yin, Z.; Duan, X. The gully erosion rates in the black soil region of northeastern China: Induced by different processes and indicated by different indexes. CATENA 2019, 182, 104146. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences. The Black Soil Conservation and Utilization Report. 2021. Available online: https://www.cas.cn/zt/kjzt/htlc/yxdt/202210/W020221002625709353750.pdf (accessed on 5 September 2024).
- Wang, H.; Yang, S.; Wang, Y.; Gu, Z.; Xiong, S.; Huang, X.; Sun, M.; Zhang, S.; Guo, L.; Cui, J.; et al. Rates and causes of black soil erosion in Northeast China. CATENA 2022, 214, 106250. [Google Scholar] [CrossRef]
- Zhai, Y.; Fang, H. Spatiotemporal variations of freeze-thaw erosion risk during 1991–2020 in the black soil region, northeastern China. Ecol. Indic. 2023, 148, 110149. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Wang, X.; Gao, X.; Liu, G. Erosion effect on the productivity of black soil in Northeast China. Sci. China Ser. D Earth Sci. 2009, 52, 1005–1021. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Wang, E.; Chen, X.; Deng, J.; Zhao, Y. Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China. Soil Tillage Res. 2018, 178, 72–81. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Chatterjee, R.; Fruneau, B.; Rudant, J.; Roy, P.; Frison, P.-L.; Lakhera, R.; Dadhwal, V.; Saha, R. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Sens. Environ. 2006, 102, 176–185. [Google Scholar] [CrossRef]
- Lee, C.W.; Lu, Z.; Jung, H.S.; Won, J.S.; Dzurisin, D. Surface Deformation of Augustine Volcano, 1992–2005, from Multiple-Interferogram Processing Using a Refined Small Baseline Subset (SBAS) Interferometric Synthetic Aperture Radar (InSAR) Approach. The 2006, 2, 453–465. [Google Scholar]
- Li, X.; Zhou, Y.; Asrar, G.R.; Meng, L. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on Landsat data. Sci. Total. Environ. 2017, 605–606, 721–734. [Google Scholar] [CrossRef]
- Patil, P.M.; Shashikant, A.; Roy, S.; Momoniat, E. Unsteady Mixed Convection over an Exponentially Decreasing External Flow Velocity. Int. J. Heat Mass Transfer 2017, 111, 643–650. [Google Scholar] [CrossRef]
- Williams, J.; Sharpley, A.; Taylor, D. Assessing the Impact of Erosion on Soil Productivity Using the EPIC Model. In Soil Erosion on Agricultural Land; Williams, J., Sharpley, A., Taylor, D., Eds.; John Wiley & Sons Ltd.: Coventry, UK, 1990; pp. 461–464. Available online: https://www.jstor.org/stable/76847 (accessed on 5 September 2024).
- Moore, I.D.; Wilson, J.P. Length-Slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation. J. Soil Water Conserv. 1992, 47, 423–428. [Google Scholar]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe. 2000. Available online: https://www.researchgate.net/publication/237727657_Soil_Erosion_Risk_Assessment_in_Europe (accessed on 5 September 2024).
- Gelagay, H.S.; Minale, A.S. Soil Loss Estimation Using GIS and Remote Sensing Techniques: A Case of Koga Watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef]
- Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens. Environ. 2006, 100, 265–279. [Google Scholar] [CrossRef]
- Zhu, W.; He, B.; Xie, Z.; Zhao, C.; Zhuang, H.; Li, P. Reconstruction of Vegetation Index Time Series Based on Self-Weighting Function Fitting from Curve Features. Remote Sens. 2022, 14, 2247. [Google Scholar] [CrossRef]
- Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote. Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 1735. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Darvishi, M.; Destouni, G.; Aminjafari, S.; Jaramillo, F. Multi-Sensor InSAR Assessment of Ground Deformations around Lake Mead and Its Relation to Water Level Changes. Remote. Sens. 2021, 13, 406. [Google Scholar] [CrossRef]
- Beijing Evening News, Heavy Rains Hit Northeast China’s Heilongjiang and Jilin Provinces. 2017. Available online: http://epaper.pdsxww.com/pdswb/page/41/2017-07/22/A06/20170722A06_pdf.pdf (accessed on 5 September 2024).
- Zhang, S.; Zhang, Y.; Yu, J.; Fan, Q.; Si, J.; Zhu, W.; Song, M. Interpretation of the Spatiotemporal Evolution Characteristics of Land Deformation in Beijing during 2003–2020 Using Sentinel, ENVISAT, and Landsat Data. Remote Sens. 2022, 14, 2242. [Google Scholar] [CrossRef]
- Jan, C.-D.; Chen, T.-H.; Lo, W.-C. Effect of rainfall intensity and distribution on groundwater level fluctuations. J. Hydrol. 2006, 332, 348–360. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, W.; Zhang, K.; Yu, Y.; Liu, L. Centennial scale temporal responses of soil magnetic susceptibility and spatial variation to human cultivation on hillslopes in Northeast China. Soil Tillage Res. 2023, 234, 105865. [Google Scholar] [CrossRef]
- Wang, S.; Cui, G.; Li, X.; Liu, Y.; Li, X.; Tong, S.; Zhang, M. GRACE Satellite-Based Analysis of Spatiotemporal Evolution and Driving Factors of Groundwater Storage in the Black Soil Region of Northeast China. Remote Sens. 2023, 15, 704. [Google Scholar] [CrossRef]
- Yan, Y.; Yu, H.; Wang, Y. Alarming a tailings dam failure with a joint analysis of InSAR-derived surface deformation and SAR-derived moisture content. Remote Sens. Environ. 2024, 300, 113910. [Google Scholar] [CrossRef]
- Sun, B.; Ren, F.; Ding, W.; Zhang, G.; Huang, J.; Li, J.; Zhang, L. Effects of freeze-thaw on soil properties and water erosion. Soil Water Res. 2021, 16, 205–216. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, E.; Cruse, R.M.; Chen, X. Characterization of seasonal freeze-thaw and potential impacts on soil erosion in northeast China. Can. J. Soil Sci. 2012, 92, 567–571. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Chen, J.; Shahir, S.; Safavi-Naeini, S. Sparse Millimeter-Wave InSAR Imaging Approach Based on MC. IEEE Geosci. Remote Sens. Lett. 2018, 15, 714–718. [Google Scholar] [CrossRef]
- Jin, F.; Yang, W.; Fu, J.; Li, Z. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Sci. Total Environ. 2021, 773, 145514. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Y.; Xu, X.; Wu, M.; Zhou, L. Simulation of rill erosion in black soil and albic soil during the snowmelt period. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2017, 67, 510–517. [Google Scholar] [CrossRef]
- Hu, G.; Wu, Y.; Liu, B.; Yu, Z.; You, Z.; Zhang, Y. Short-term Gully Retreat Rates over Rolling Hill Areas in Black Soil of Northeast China. Catena 2007, 71, 321–329. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, J.; Gao, Y.; Gu, Z.J.; Liu, G.; Ren, X.Y. Spatial Distribution of Soil Erosion and Its Impacts on Soil Productivity in Songnen Typical Black Soil Region. Int. Soil Water Conserv. Res. 2023, 11, 649–659. [Google Scholar]
- Yao, J.; Yao, X.; Liu, X. Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County, Tibet, China. Remote Sens. 2022, 14, 4728. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Dou, J.; Hou, S.; Xiang, Z.; Wang, H.; Yang, P.; Liu, X. Advancing Reservoir Landslide Stability Assessment via TS-InSAR and Airborne LiDAR Observations in the Daping Landslide Group, Three Gorges Reservoir Area, China. Landslides 2024, 21, 327–337. [Google Scholar] [CrossRef]
SAR Data Parameter | Sentinel-1 B |
---|---|
Satellite (path) | Descending |
Polarization | VV |
Beam mode | IW |
Wave band | C |
Orbit | Path 32 |
Pixel spacing (Rg × Az) (m) | 2.3 × 14.1 |
Wave length | 5.6 cm |
Time interval for image acquisition/(days) | ~12 |
Image time range (D-InSAR) | 2016–2021 (multi-year)/2017 (single) |
Image time range (SBAS) | 6 January 2017 to 20 December 2017 |
Quantity of images | 25 |
SBAS-InSAR data Specific time | 6 January, 18 January, 30 January, 11 February, 7 March, 19 March, 31March, 12April, 24 April, 6 May, 18 May, 30 May, 11 June, 23 June, 5 July, 29 July, 10 August, 22 August, 3 September, 15 September, 9 October, 14 November, 8 December, 20 December |
Datasets | Bands | Spatial Resolution (m) | Reference |
---|---|---|---|
CHIRPS Pentad: Climate Hazards Group InfraRed Precipitation with Station Data (Version 2.0 Final) | precipitation | 5566 | https://doi.org/10.1038/sdata.2015.66, accessed on 5 September 2024 |
NASA SRTM Digital Elevation 30 m | elevation | 30 | https://doi.org/10.1029/2005RG000183, accessed on 5 September 2024 |
OpenLandMap Soil Bulk Density | b0 (soil bulk density at 0 cm depth) | 250 | https://doi.org/10.5281/zenodo.1475970, accessed on 5 September 2024 |
OpenLandMap Sand Content | b0 (sand content at 0 cm depth) | 250 | https://doi.org/10.5281/zenodo.1476851, accessed on 5 September 2024 |
OpenLandMap Clay Content | b0 (clay content at 0 cm depth) | 250 | https://doi.org/10.5281/zenodo.1476854, accessed on 5 September 2024 |
OpenLandMap Soil Water Content at 33 kPa (Field Capacity) | b0 (soil water content at 33 kPa (field capacity) at 0 cm depth) | 250 | https://doi.org/10.5281/zenodo.2629589, accessed on 5 September 2024 |
MCD12Q1.006 MODIS Land Cover Type Yearly Global 500 m | LC_Type1 | 500 | https://doi.org/10.5067/MODIS/MCD12Q1.006, accessed on 5 September 2024 |
Sentinel-2 MSI: Multi-Spectral Instrument, Level-1C | B8, B4 | 10 | Copernicus Sentinel Data Terms and Conditions. |
OpenLandMap Soil Texture Class (USDA System) | b0 (Soil texture class (USDA system) at 0 cm depth) | 250 | https://doi.org/10.5281/zenodo.1475451 accessed on 5 September 2024 |
MYD13Q1.006 Aqua Vegetation Indices 16-day Global 250 m | EVI (Enhanced Vegetation Index) | 250 | https://doi.org/10.5067/MODIS/MYD13Q1.006, accessed on 5 September 2024 |
Deformation (mm) | Date | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18 January | 11 February | 31 March | 24 April | 30 May | 23 June | 29 July | 22 August | 15 September | 9 October | 14 November | 20 December | Velocity mm yr−1 | |
Max | 18.1 | 41.6 | 9.8 | 12.4 | 19.7 | 21.4 | 14.4 | 17.5 | 15.4 | 16.6 | 19.8 | 35.9 | 21.909 |
Min | −12.2 | −22.9 | −17.9 | −36.2 | −45.3 | −31.3 | −45.1 | −45.9 | −47.2 | −48.5 | −51.7 | −52 | −57.173 |
Mean | −0.156 | 3.959 | −2.339 | −4.864 | −4.513 | −4.202 | −4.043 | −3.848 | −3.886 | −4.916 | −4.375 | −2.433 | −5.054 |
Standard deviation | 1.04 | 3.468 | 2.142 | 2.913 | 2.754 | 3.089 | 3.124 | 3.171 | 2.981 | 2.905 | 2.869 | 2.886 | 2.867 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Yang, J.; Chen, X.; Wang, X.; Li, J.; Azad, N.; Zvomuya, F.; He, H. Using Advanced InSAR Techniques and Machine Learning in Google Earth Engine (GEE) to Monitor Regional Black Soil Erosion—A Case Study of Yanshou County, Heilongjiang Province, Northeastern China. Remote Sens. 2024, 16, 3842. https://doi.org/10.3390/rs16203842
Gao Y, Yang J, Chen X, Wang X, Li J, Azad N, Zvomuya F, He H. Using Advanced InSAR Techniques and Machine Learning in Google Earth Engine (GEE) to Monitor Regional Black Soil Erosion—A Case Study of Yanshou County, Heilongjiang Province, Northeastern China. Remote Sensing. 2024; 16(20):3842. https://doi.org/10.3390/rs16203842
Chicago/Turabian StyleGao, Yanchen, Jiahui Yang, Xiaoyu Chen, Xiangwei Wang, Jinbo Li, Nasrin Azad, Francis Zvomuya, and Hailong He. 2024. "Using Advanced InSAR Techniques and Machine Learning in Google Earth Engine (GEE) to Monitor Regional Black Soil Erosion—A Case Study of Yanshou County, Heilongjiang Province, Northeastern China" Remote Sensing 16, no. 20: 3842. https://doi.org/10.3390/rs16203842
APA StyleGao, Y., Yang, J., Chen, X., Wang, X., Li, J., Azad, N., Zvomuya, F., & He, H. (2024). Using Advanced InSAR Techniques and Machine Learning in Google Earth Engine (GEE) to Monitor Regional Black Soil Erosion—A Case Study of Yanshou County, Heilongjiang Province, Northeastern China. Remote Sensing, 16(20), 3842. https://doi.org/10.3390/rs16203842