Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor
Abstract
:1. Introduction
2. Description of the OMPS Instrument and Validation Data
2.1. OMPS Description
2.2. Description of Lidar Data
2.3. Description of the MSIS and ERA5 Reference Climatologies
3. Description of Our New Simplified Radiative Transfer Model (NSRTM)
3.1. Description of the Temperature Inversion Method
3.2. Initialisation Altitude, Stray Light and Background Correction Calculation
3.3. Onion Peel Method
3.4. Observation Geometry for OMPS Layers
3.5. Diffusion and Absorption of the Various Constituents of the Middle Atmosphere
3.5.1. Rayleigh Scattering
3.5.2. Ozone Absorption
3.5.3. Nitrogen Dioxide Absorption
3.6. Correcting the Attenuation of Radiance Profiles
3.7. Calculating the Temperature Profile
4. Comparisons of Temperature Profiles Obtained with the OMPS Instrument with Lidars from the NDACC Network
4.1. Collocation Information
- Observatoire de Haute-Provence (OHP) located in the south of France at 43.94°N, 5.71°E;
- Mauna Loa Observatory (MLO) located in Hawaii at 19.54°N, 155.58°W;
- Observatoire de Physique Atmosphérique de La Réunion (RUN) located in the Indian Ocean on the island of Réunion at the geographical position 21.1°S, 55.4°E;
- Hohenpeißenberg Meteorological Observatory (HOH) located in Germany at 47.80°N, 11.02°E.
4.2. Wavelength Analysis
4.3. Results of Temperature Analyses for Each Site
- OHP: 1685 comparisons for MLS, MSIS and ERA5, and 777 comparisons against lidar between 2015 and 2020.
- MLO: 990 comparisons for MLS, MSIS and ERA5, and 493 comparisons with lidar between 2015 and July 2018.
- RUN: 1207 comparisons for MLS, MSIS and ERA5, and 257 comparisons against lidar between 2015 and 2020, there are no comparisons for the year 2016.
- HOH: 597 comparisons for MLS, MSIS and ERA5, and 263 comparisons against lidar for the 2 years 2015 and 2016.
4.4. Discussion and Conclusion of Comparisons
5. Application to a Miniaturised Instrument
5.1. Application to a Miniaturised Instrument
5.2. Aerosol Effects
5.3. Noise Assessment
5.4. NO2 and O3 Corrections
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tett, S.F.; Betts, R.; Crowley, T.J.; Gregory, J.; Johns, T.C.; Jones, A.; Osborn, T.J.; Öström, E.; Roberts, D.L.; Woodage, M.J. The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Clim. Dyn. 2006, 28, 3–34. [Google Scholar] [CrossRef]
- Beig, G.; Keckhut, P.; Lowe, R.P.; Roble, R.G.; Mlynczak, M.G.; Scheer, J.; Fomichev, V.I.; Offermann, D.; French, W.J.R.; Shepherd, M.G.; et al. Review of Mesospheric temperature Trends. Rev. Geophys. 2003, 41, 1015. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Keckhut, P.; Chanin, M. Dynamics and Transport in the Middle Atmosphere Using Remote Sensing Techniques from Ground and Space; Springer: Dordrecht, The Netherlands, 2009; pp. 665–683. [Google Scholar] [CrossRef]
- Salby, M.L.; Callaghan, P.; Keckhut, P.; Godin, S.; Guirlet, M. Interannual changes of tempera-ture and ozone: Relationship between the lower and upper stratosphere. J. Geophys. Res. 2002, 107, ACH 1-1–ACH 1-8. [Google Scholar] [CrossRef]
- Rind, D.; Suozzo, R.; Balachandran, N.K.; Lacis, A.A.; Russell, G.L. The GISS Global Climate-Middle Atmosphere Model. Part I: Model Structure and Climatology. J. Atmo Spheric Sci. 1988, 45, 329–370. [Google Scholar] [CrossRef]
- Rind, D.; Suozzo, R.; Balachandran, N.K. The GISS Global Climate-Middle Atmosphere Model. Part II. Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag. J. Atmos. Sci. 1988, 45, 371–386. [Google Scholar] [CrossRef]
- Keckhut, P.; Randel, W.J.; Claud, C.; Leblanc, T.; Steinbrecht, W.; Funatsu, B.M.; Bencherif, H.; Mcdermid, I.S.; Hauchecorne, A.; Long, C.; et al. An evaluation of uncertainties in monitoring middle atmosphere temperatures with the ground-based LIDAR network in support of space observations. J. Atmos. Sol.-Terr. Phys. 2011, 73, 627–642. [Google Scholar] [CrossRef]
- Maury, P.; Claud, C.; Manzini, E.; Hauchecorne, A.; Keckhut, P. Characteristics of stratospheric warming events during Northern winter. Journal of geophysical research. Atmospheres 2016, 121, 5368–5380. [Google Scholar] [CrossRef]
- Mzé, N.; Hauchecorne, A.; Keckhut, P.; Thétis, M. Vertical distribution of gravity wave potential energy from long-term Rayleigh lidar data at a northern middle-latitude site. Journal of geophysical research. Atmospheres 2014, 119, 12069–12083. [Google Scholar] [CrossRef]
- Ardalan, M.; Keckhut, P.; Hauchecorne, A.; Wing, R.; Meftah, M.; Farhani, G. Updated Climatology of Mesospheric Temperature Inversions Detected by Rayleigh Lidar above Observatoire de Haute Provence, France, Using a K-Mean Clustering Technique. Atmosphere 2022, 13, 814. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef]
- Shaw, T.A.; Perlwitz, J.; Weiner, O.M. Troposphere-Stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res. Atmos. 2014, 119, 5480–5864. [Google Scholar] [CrossRef]
- Charlton-Perez, A.; Ferranti, L.; Lee, R.W. The influence of the stratospheric state on North Atlantic weather regimes. Q. J. R. Soc. 2018, 144, 1140–1151. [Google Scholar] [CrossRef]
- Mariaccia, A.; Keckhut, P.; Hauchecorne, A. Classification of stratosphere winter evolutions into four different scenarios in the Northern hemisphere. J. Geophys. Res. Atmos. 2022, 127, e2022JD036662. [Google Scholar] [CrossRef]
- Mariaccia, A.; Keckhut, P.; Hauchecorne, A. Classification of stratosphere winter evolutions into four different scenarios in the Northern hemisphere: Part B coupling with the surface. ESS Open Arch. 2023. [Google Scholar] [CrossRef]
- Srivastava, N.; Mierla, M.; Zhang, J. Editorial: Space Weather Prediction: Challenges and Prospects. Front. Astron. Space Sci. 2021, 8, 230. [Google Scholar] [CrossRef]
- Beagley, S.R.; McLandress, C.; Fomichev, V.I.; Ward, W.E. The extended Canadian Middle Atmosphere model. Geophys. Res. Lett. 2000, 27, 2529–2532. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Stephenson, D.B.; Thompson, D.W.J.; Dunkerton, T.J.; Charlton, A.J.; O’Neill, A. Stratospheric memory and skill of Extended-Range weather forecasts. Science 2003, 301, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Osprey, S.; Gray, L.J.; Hardiman, S.C.; Butchart, N.; Bushell, A.C.; Hinton, T. The climatology of the Middle Atmosphere in a vertically extended version of the Met Office’s climate Model. Part I: Mean state. J. Atmos. Sci. 2010, 67, 1509–1525. [Google Scholar] [CrossRef]
- Parker, D.E.; Cox, D.I. Towards a consistent global climatological rawinsonde data-base. Int. J. Climatol. 1995, 15, 473–496. [Google Scholar] [CrossRef]
- Ladstädter, F.; Steiner, A.; Foelsche, U.; Haimberger, L.; Tavolato, C.; Kirchengast, G. An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation. Atmos. Meas. Tech. 2011, 4, 1965–1977. [Google Scholar] [CrossRef]
- Keckhut, P.; Schmidlin, F.; Hauchecorne, A.; Chanin, M. Stratospheric and mesospheric cooling trend estimates from u.s. rocketsondes at low latitude stations (8°S–34°N), taking into account instrumental changes and natural variability. J. Atmos. Sol.-Terr. Phys. 1999, 61, 447–459. [Google Scholar] [CrossRef]
- Wing, R.; Hauchecorne, A.; Keckhut, P.; Godin-Beekmann, S.; Khaykin, S.; McCullough, E.M.; Mariscal, J.F.; d’Almeida, E. LIDAR Temperature Series in the Middle Atmosphere as a reference data set—Part 1: Improved retrievals and a 20-year cross-validation of two co-located French LIDARs. Atmos. Meas. Tech. 2018, 11, 5531–5547. [Google Scholar] [CrossRef]
- Marlton, G.; Charlton-Perez, A.; Harrison, G.; Polichtchouk, I.; Hauchecorne, A.; Keckhut, P.; Wing, R.; Leblanc, T.; Steinbrecht, W. Using a network of temperature LIDARs to identify temperature biases in the upper stratosphere in ECMWF reanalyses. Atmos. Chem. Phys. 2021, 21, 6079–6092. [Google Scholar] [CrossRef]
- Mariaccia, A.; Keckhut, P.; Hauchecorne, A.; Claud, C.; Le Pichon, A.; Meftah, M.; Khaykin, S. Assessment of ERA-5 temperature variability in the middle atmosphere using Rayleigh LIDAR measurements between 2005 and 2020. Atmosphere 2022, 13, 242. [Google Scholar] [CrossRef]
- Hervig, M.E.; Russell, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Deshler, T. Validation of aerosol measurements from the halogen occultation experiment. J. Geophys. Res. 1996, 101, 10267–10275. [Google Scholar] [CrossRef]
- Remsberg, E.E.; Bhatt, P.P.; Deaver, L.E. Seasonal and longer-term variations in middle atmosphere temperature from HALOE on UARS. J. Geophys. Res. 2002, 107, ACL 18-1–ACL 18-13. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Chanin, M. Density and temperature profiles obtained by LIDAR between 35 and 70 km. Geophys. Res. Lett. 1980, 7, 565–568. [Google Scholar] [CrossRef]
- Clancy, R.T.; Rusch, D.W.; Callan, M. Temperature minima in the average thermal structure of the Middle Mesosphere (70–80 km) from analysis of 40- to 92-km SME global temperature profiles. J. Geophys. Res. 1994, 99, 19001–19020. [Google Scholar] [CrossRef]
- Shepherd, M.G.; Reid, B.; Zhang, S.; Solheim, B.H.; Shepherd, G.G.; Wickwar, V.B.; Herron, J.P. Retrieval and validation of mesospheric temperatures from wind imaging interferometer observations. J. Geophys. Res. 2001, 106, 24813–24829. [Google Scholar] [CrossRef]
- Sheese, P.E.; Strong, K.; Llewellyn, E.J.; Gattinger, R.L.; Russell, J.M., III; Boone, C.D.; Hervig, M.E.; Sica, R.J.; Bandoro, J. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements. Atmos. Meas. Tech. 2012, 5, 2993–3006. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Blanot, L.; Wing, R.; Keckhut, P.; Khaykin, S.; Bertaux, J.L.; Meftah, M.; Claud, C.; Sofieva, V. A new MesosphEO data set of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations. Atmos. Meas. Tech. 2019, 12, 749–761. [Google Scholar] [CrossRef]
- Kyrölä, E.; Tamminen, J.; Leppelmeier, G.W.; Sofieva, V.; Hassinen, S.; Bertaux, J.L.; Hauchecorne, A.; Dalaudier, F.; Cot, C.; Korablev, O.; et al. GOMOS on Envisat: An overview. Adv. Space Res. 2004, 33, 1020–1028. [Google Scholar] [CrossRef]
- Keckhut, P.; Hauchecorne, A.; Meftah, M.; Khaykin, S.; Claud, C.; Simoneau, P. Middle-Atmosphere temperature monitoring addressed with a constellation of CubeSats dedicated to climate issues. J. Atmos. Ocean. Technol. 2021, 38, 685–693. [Google Scholar] [CrossRef]
- Meftah, M.; Clavier, C.; Sarkissian, A.; Hauchecorne, A.; Bekki, S.; Lefèvre, F.; Galopeau, P.; Dahoo, P.R.; Pazmino, A.; Vieau, A.J.; et al. Uvsq-Sat NG, a New CubeSat Pathfinder for Monitoring Earth Outgoing Energy and Greenhouse Gases. Remote Sens. 2023, 15, 4876. [Google Scholar] [CrossRef]
- Chen, Z.; Schwartz, M.J.; Bhartia, P.K.; Schoeberl, M.; Kramarova, N.; Jaross, G.; DeLand, M. Mesospheric and Upper Stratospheric Temperatures From OMPS-LP. Earth Space Sci. 2023, 10, e2022EA002763. [Google Scholar] [CrossRef]
- Singh, U.N.; Keckhut, P.; McGee, T.J.; Gross, M.R.; Hauchecorne, A.; Fishbein, E.F.; Waters, J.W.; Gille, J.C.; Roche, A.E.; Russell, J.M., III. Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign. J. Geophys. Res. 1996, 101, 10287–10297. [Google Scholar] [CrossRef]
- Keckhut, P.; McDermid, S.; Swart, D.; McGee, T.; Godin-Beekmann, S.; Adriani, A.; Barnes, J.; Baray, J.L.; Bencherif, H.; Claude, H.; et al. Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change. J. Environ. Monit. 2004, 6, 721. [Google Scholar] [CrossRef] [PubMed]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, SIA 15-1–SIA 15-16. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Jaross, G.; Bhartia, P.K.; Chen, G.; Kowitt, M.; Haken, M.; Chen, Z.; Xu, P.; Warner, J.; Kelly, T. OMPS Limb Profiler instrument performance assessment. J. Geophys. Res. Atmos. 2014, 119, 4399–4412. [Google Scholar] [CrossRef]
- Kurylo, M.J. Network for the detection of stratospheric change. Remote Sens. Atmos. Chem. 1991, 1491, 168–174. [Google Scholar]
- Fishbein, E.F.; Cofield, R.E.; Froidevaux, L.; Jarnot, R.F.; Lungu, T.; Read, W.G.; Shippony, Z.; Waters, J.W.; McDermid, I.S.; McGee, T.J.; et al. Validation of UARS Microwave Limb Sounder temperature and pressure measurements. J. Geophys. Res. Atmos. 1996, 101, 9983–10016. [Google Scholar] [CrossRef]
- Gille, J.C.; Bailey, P.L.; Massie, S.T.; Lyjak, L.V.; Edwards, D.P.; Roche, A.E.; Kumer, J.B.; Mergenthaler, J.L.; Gross, M.R.; Hauchecorne, A.; et al. Accuracy and precision of cryogenic limb array etalon spectrometer (CLAES) temperature retrievals. J. Geophys. Res. 1996, 101, 9583–9601. [Google Scholar] [CrossRef]
- Wu, D.L.; Read, W.G.; Shippony, Z.; Leblanc, T.; Duck, T.J.; Ortland, D.A.; Sica, R.J.; Argall, P.S.; Oberheide, J.; Hauchecorne, A.; et al. Mesospheric temperature from UARS MLS: Retrieval and validation. J. Atmos. Sol.-Terr. Phys. 2003, 65, 245–267. [Google Scholar] [CrossRef]
- Ridolfi, M.; Blum, U.; Carli, B.; Catoire, V.; Ceccherini, S.; Claude, H.; De Clercq, C.; Fricke, K.H.; Friedl-Vallon, F.; Iarlori, M.; et al. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements. Atmos. Chem. Phys. 2007, 7, 4459–4487. [Google Scholar] [CrossRef]
- Sica, R.J.; Izawa, M.R.M.; Walker, K.A.; Boone, C.; Petelina, S.V.; Argall, P.S.; Bernath, P.; Burns, G.B.; Catoire, V.; Collins, R.L.; et al. Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements. Atmos. Chem. Phys. 2008, 8, 35–62. [Google Scholar] [CrossRef]
- Sivakumar, V.; Prasanth, V.P.; Kishore, P.; Bencherif, H.; Keckhut, P. Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratosphere-mesosphere temperature over a southern sub-tropical site, Reunion (20.8°S; 55.5°E): Climatology and comparison study. Ann. Geophys. 2011, 29, 649–662. [Google Scholar] [CrossRef]
- Wing, R.; Hauchecorne, A.; Keckhut, P.; Godin-Beekmann, S.; Khaykin, S.; McCullough, E. LIDAR Temperature Series in the Middle Atmosphere as a reference data set—Part 2: Assessment of temperature observations from MLS/AURA and SABER/TIMED satellites. Atmos. Meas. Tech. 2018, 11, 6703–6717. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Claud, C.; Keckhut, P.; Hauchecorne, A. Cross-validation of Advanced Microwave Sounding Unit and lidar for long-term upper-stratospheric temperature monitoring. J. Geophys. Res. 2008, 113, D23108. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Claud, C.; Keckhut, P.; Hauchecorne, A.; Leblanc, T. Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. Atmospheres 2016, 121, 8172–8185. [Google Scholar] [CrossRef]
- Wing, R.; Steinbrecht, W.; Godin-Beekmann, S.; McGee, T.J.; Sullivan, J.T.; Sumnicht, G.; Ancellet, G.; Hauchecorne, A.; Khaykin, S.; Keckhut, P. Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE). Atmos. Meas. Tech. 2020, 13, 5621–5642. [Google Scholar] [CrossRef]
- Leblanc, T.; McDermid, I.S.; Hauchecorne, A.; Keckhut, P. Evaluation of optimization of lidar temperature analysis algorithms using simulated data. J. Geophys. Res. 1998, 103, 6177–6187. [Google Scholar] [CrossRef]
- Wild, J.D.; Gelman, M.E.; Miller, A.J.; Chanin, M.L.; Hauchecorne, A.; Keckhut, P.; Farley, R.; Dao, P.D.; Meriwether, J.W.; Gobbi, G.P.; et al. Comparison of stratospheric temperatures from several lidars, using National Meteorological Center and microwave limb sounder data as transfer references. J. Geophys. Res. 1995, 100, 11105–11111. [Google Scholar] [CrossRef]
- Emmert, J.T.; Drob, D.P.; Picone, J.M.; Siskind, D.E.; Jones, M., Jr.; Mlynczak, M.G.; Bernath, P.F.; Chu, X.; Doornbos, E.; Funke, B.; et al. NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities. Earth Space Sci. 2021, 8, e2020EA001321. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Keckhut, P.; Hauchecorne, A.; Chanin, M.L. A Critical Review of the Database Acquired for the Long-Term Surveillance of the Middle Atmosphere by the French Rayleigh Lidars. J. Atmos. Ocean. Technol. 1993, 10, 850–867. [Google Scholar] [CrossRef]
- Khaykin, S.M.; Godin-Beekmann, S.; Keckhut, P.; Hauchecorne, A.; Jumelet, J.; Vernier, J.P.; Bourassa, A.; Degenstein, D.A.; Rieger, L.A.; Bingen, C.; et al. Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations. Atmos. Chem. Phys. 2017, 17, 1829–1845. [Google Scholar] [CrossRef]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Kramarova, N.A.; Bhartia, P.K.; Jaross, G.; Moy, L.; Xu, P.; Chen, Z.; DeLand, M.; Froidevaux, L.; Livesey, N.; Degenstein, D.; et al. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements. Atmos. Meas. Tech. 2018, 11, 2837–2861. [Google Scholar] [CrossRef]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Hartmann, M.; Kromminga, H.; Bovensmann, H.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Kyrölä, E.; Andersson, M.E.; Verronen, P.T.; Laine, M.; Tukiainen, S.; Marsh, D.R. Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations. Atmos. Chem. Phys. 2018, 18, 5001–5019. [Google Scholar] [CrossRef]
- Meftah, M.; Sarkissian, A.; Keckhut, P.; Hauchecorne, A. The SOLAR-HRS New High-Resolution Solar Spectra for Disk-Integrated, Disk-Center, and Intermediate Cases. Remote Sens. 2023, 15, 3560. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Costa Louro, P.; Keckhut, P.; Hauchecorne, A.; Meftah, M.; Jaross, G.; Mangin, A. Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor. Remote Sens. 2024, 16, 3878. https://doi.org/10.3390/rs16203878
Da Costa Louro P, Keckhut P, Hauchecorne A, Meftah M, Jaross G, Mangin A. Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor. Remote Sensing. 2024; 16(20):3878. https://doi.org/10.3390/rs16203878
Chicago/Turabian StyleDa Costa Louro, Pedro, Philippe Keckhut, Alain Hauchecorne, Mustapha Meftah, Glen Jaross, and Antoine Mangin. 2024. "Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor" Remote Sensing 16, no. 20: 3878. https://doi.org/10.3390/rs16203878
APA StyleDa Costa Louro, P., Keckhut, P., Hauchecorne, A., Meftah, M., Jaross, G., & Mangin, A. (2024). Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor. Remote Sensing, 16(20), 3878. https://doi.org/10.3390/rs16203878