Monitoring Salinity in Inner Mongolian Lakes Based on Sentinel-2 Images and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Data
2.2. Meteorological and Anthropogenic Factors
2.3. Sentinel-2 MSI Data and Preprocessing
2.3.1. Sentinel-2 MSI Data and Lake Area
2.3.2. Atmospheric Correction
2.4. Salinity Retrieval Model Training
2.5. Driver Mining
2.6. Trend Analysis
2.7. Accuracy Analysis
2.8. Analysis Overview
3. Results
3.1. Performance of Atmospheric Correction Algorithms
3.2. Model Performance
3.3. Spatial Pattern of Lake Salinity
3.4. Interannual Trends in Lake Salinity
3.5. Driving Factors of Lake Salinity Variations
4. Discussion
4.1. Model Interpretation: Capabilities and Limitations
4.2. Mechanism Analysis of Salinity Driving Factors
4.3. Implications for Monitoring Salinity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeppesen, E.; Beklioglu, M.; Ozkan, K.; Akyurek, Z. Salinization Increase Due to Climate Change Will Have Substantial Negative Effects on Inland Waters: A Call for Multifaceted Research at the Local and Global Scale. Innovation 2020, 1, 100030. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, F.; Jiang, X.; Hu, Y.; Shao, K.; Tang, X.; Qin, B.; Gao, G. Salinity Is a Key Determinant for the Microeukaryotic Community in Lake Ecosystems of the Inner Mongolia Plateau, China. Front. Microbiol. 2022, 13, 841686. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Xiao, Q.; Li, Y.; Yang, C.; Li, J.; Duan, H. Salinity Is an Important Factor in Carbon Emissions from an Inland Lake in Arid Region. Sci. Total Environ. 2024, 906, 167721. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef]
- Song, C.; Luo, S.; Liu, K.; Chen, T.; Zhang, P.; Fan, C. Widespread Declines in Water Salinity of the Endorheic Tibetan Plateau Lakes. Environ. Res. Commun. 2022, 4, 091002. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Wang, X.; Yang, Y.; Wan, J.; Chen, Z.; Wang, N.; Guo, Y.; Wang, Y. Water Quality Variation and Driving Factors Quantitatively Evaluation of Urban Lakes during Quick Socioeconomic Development. J. Environ. Manag. 2023, 344, 118615. [Google Scholar] [CrossRef]
- Ren, X.; Yu, R.; Liu, X.; Sun, H.; Yue, G.; Qi, Z.; Zhang, Z.; Li, X.; Wang, J.; Zhu, P.; et al. Spatial Changes and Driving Factors of Lake Water Quality in Inner Mongolia, China. J. Arid Land 2023, 15, 164–179. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea Surface Salinity Estimates from Spaceborne L-Band Radiometers: An Overview of the First Decade of Observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Noges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) Data Processing for Aquatic Science Applications: Demonstrations and Validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Werther, M.; Odermatt, D.; Simis, S.G.H.; Gurlin, D.; Lehmann, M.K.; Kutser, T.; Gupana, R.; Varley, A.; Hunter, P.D.; Tyler, A.N.; et al. A Bayesian Approach for Remote Sensing of Chlorophyll-a and Associated Retrieval Uncertainty in Oligotrophic and Mesotrophic Lakes. Remote Sens. Environ. 2022, 283, 113295. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, X.; Spyrakos, E.; Li, J.; Mcglinchey, C.; Constantinescu, A.M.; Tyler, A.N. Water Color from Sentinel-2 MSI Data for Monitoring Large Rivers: Yangtze and Danube. Geo-Spat. Inf. Sci. 2023, 27, 854–869. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Surface-Roughness Considerations for Atmospheric Correction of Ocean Color Sensors. II: Error in the Retrieved Water-Leaving Radiance. Appl. Opt. 1992, 31, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of Atmospheric Correction Algorithms for the Sentinel-2A MultiSpectral Imager over Coastal and Inland Waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Sullivan, S.A. Experimental Study of the Absorption in Distilled Water, Artificial Sea Water, and Heavy Water in the Visible Region of the Spectrum*. J. Opt. Soc. Am. 1963, 53, 962–968. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C. Estimating Sea Surface Salinity in the Northern Gulf of Mexico from Satellite Ocean Color Measurements. Remote Sens. Environ. 2017, 201, 115–132. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A Machine Learning Approach to Estimate Chlorophyll-a from Landsat-8 Measurements in Inland Lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, M.; Ma, R.; Zhang, Y.; Duan, H.; Jiang, L.; Xue, K.; Xiong, J.; Hu, M. A Decade-Long Chlorophyll-a Data Record in Lakes across China from VIIRS Observations. Remote Sens. Environ. 2024, 301, 113953. [Google Scholar] [CrossRef]
- Pyo, J.; Duan, H.; Baek, S.; Kim, M.S.; Jeon, T.; Kwon, Y.S.; Lee, H.; Cho, K.H. A Convolutional Neural Network Regression for Quantifying Cyanobacteria Using Hyperspectral Imagery. Remote Sens. Environ. 2019, 233, 111350. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI Observations of Water Clarity in Large Lakes in Eastern China: Implications for SDG 6.3.2 Evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- Urquhart, E.A.; Zaitchik, B.F.; Hoffman, M.J.; Guikema, S.D.; Geiger, E.F. Remotely Sensed Estimates of Surface Salinity in the Chesapeake Bay: A Statistical Approach. Remote Sens. Environ. 2012, 123, 522–531. [Google Scholar] [CrossRef]
- Bayati, M.; Danesh-Yazdi, M. Mapping the Spatiotemporal Variability of Salinity in the Hypersaline Lake Urmia Using Sentinel-2 and Landsat-8 Imagery. J. Hydrol. 2021, 595, 126032. [Google Scholar] [CrossRef]
- Dai, J.; Liu, T.; Zhao, Y.; Tian, S.; Ye, C.; Nie, Z. Remote Sensing Inversion of the Zabuye Salt Lake in Tibet, China Using LightGBM Algorithm. Front. Earth Sci. 2023, 10, 1022280. [Google Scholar] [CrossRef]
- Ma, R.; Yang, G.; Duan, H.; Jiang, J.; Wang, S.; Feng, X.; Li, A.; Kong, F.; Xue, B.; Wu, J.; et al. China’s Lakes at Present: Number, Area and Spatial Distribution. Sci. China-Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Yang, F.; Wen, B.; Li, X.; Yang, Y.; Wang, S.; Ou, Y.; Liu, W.; Wang, Z.; Meng, X.; Li, C.; et al. Investigation of Water Environment and Fish Diversity in Dalinor Wetlands I. Major Ions, Salt Content and Electrical Conductivity in the Water of Dali Lake. Wetl. Sci. 2020, 18, 507–515. [Google Scholar]
- Li, X.; Liu, Y.; Zhang, S.; Shi, X.; Li, W.; Sun, B.; Zhao, S. Spatiotemporal Variation of Phytoplankton Community Structure and Its Influencing Factors in the Dalinor Lake. Wetl. Sci. 2023, 21, 897–906. [Google Scholar]
- Xu, C. Bacterial Diversity in the Water and Sediment of Daihai Lake. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2023. [Google Scholar]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A Procedure for Regional Lake Water Clarity Assessment Using Landsat Multispectral Data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Mueller, J.L.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Lee, Z.P.; Steward, R.G.; Hooker, S.; Mobley, C.D. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4. Volume III: Radiometric Measurements and Data Analysis Protocols; Goddard Space Flight Center: Greenbelt, MD, USA, 2003. [Google Scholar]
- Lorenzen, C. Determination of Chlorophyll and Pheo-Pigments—Spectrophotometric Equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Ma, R.; Feng, S.; Le, C. Optically Active Substances and Their Contributions to the Underwater Light Climate in Lake Taihu, a Large Shallow Lake in China. Fundam. Appl. Limnol. 2007, 170, 11–19. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1950 to Present. 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview (accessed on 10 August 2024).
- Lehner, B.; Grill, G. Global River Hydrography and Network Routing: Baseline Data and New Approaches to Study the World’s Large River Systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Otsu, N. Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Knaeps, E.; Ruddick, K.G.; Doxaran, D.; Dogliotti, A.I.; Nechad, B.; Raymaekers, D.; Sterckx, S. A SWIR Based Algorithm to Retrieve Total Suspended Matter in Extremely Turbid Waters. Remote Sens. Environ. 2015, 168, 66–79. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Doerffer, R.; Schiller, H. The MERIS Case 2 Water Algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 740, p. 54. [Google Scholar]
- Antoine, D.; Morel, A. Relative Importance of Multiple Scattering by Air Molecules and Aerosols in Forming the Atmospheric Path Radiance in the Visible and Near-Infrared Parts of the Spectrum. Appl. Opt. 1998, 37, 2245–2259. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric Correction in Presence of Sun Glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters. Appl. Optics 2000, 39, 897–912. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D.; et al. Atmospheric Correction of Landsat-8/OLI and Sentinel-2/MSI Data Using iCOR Algorithm: Validation for Coastal and Inland Waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Muller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–14 September 2017; Bruzzone, L., Bovolo, F., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2017; Volume 10427, p. 1042704. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Assoc Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Lyons, M.B.; Keith, D.A.; Phinn, S.R.; Mason, T.J.; Elith, J. A Comparison of Resampling Methods for Remote Sensing Classification and Accuracy Assessment. Remote Sens. Environ. 2018, 208, 145–153. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hu, C. Remote Detection of Marine Debris Using Sentinel-2 Imagery: A Cautious Note on Spectral Interpretations. Mar. Pollut. Bull. 2022, 183, 114082. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.-A. Sunglint Correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 Imagery over Inland and Sea Waters from SWIR Bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Tian, L.; Chen, L. Human Induced Turbidity Changes in Poyang Lake between 2000 and 2010: Observations from MODIS. J. Geophys. Res.-Oceans 2012, 117, C07006. [Google Scholar] [CrossRef]
- Siddorn, J.R.; Bowers, D.G.; Hoguane, A.M. Detecting the Zambezi River Plume Using Observed Optical Properties. Mar. Pollut. Bull. 2001, 42, 942–950. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Kou, Q. The Decrease of Salinity in Lakes on the Tibetan Plateau between 2000 and 2019 Based on Remote Sensing Model Inversions. Int. J. Digit. Earth 2023, 16, 2644–2659. [Google Scholar] [CrossRef]
- Smith, R.C.; Baker, K.S. Optical Properties of the Clearest Natural Waters (200–800 nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef]
- Mobley, C.D. The Optical Properties of Water. In Handbook of Optics; McGraw-Hill: New York, NY, USA, 1995; Volume 1, ISBN 0-07-047740-X. [Google Scholar]
- Rusuli, Y.; Li, L.; Ahmad, S.; Zhao, X. Dynamics Model to Simulate Water and Salt Balance of Bosten Lake in Xinjiang, China. Environ. Earth Sci. 2015, 74, 2499–2510. [Google Scholar] [CrossRef]
- Jiang, X.; Fan, C.; Liu, K.; Chen, T.; Cao, Z.; Song, C. Centenary Covariations of Water Salinity and Storage of the Largest Lake of Northwest China Reconstructed by Machine Learning. J. Hydrol. 2022, 612, 128095. [Google Scholar] [CrossRef]
- Guo, M.; Zhou, X.; Li, J.; Wu, W.; Chen, Y. Assessment of the Salinization Processes in the Largest Inland Freshwater Lake of China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1823–1833. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Zhang, J.; Xu, Y.J.; Wu, Y.; Wu, Y.; Sun, G.; Chen, Y.; Ma, H. Effects of Irrigation Discharge on Salinity of a Large Freshwater Lake: A Case Study in Chagan Lake, Northeast China. Water 2020, 12, 2112. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Lin, P.; Cheng, L.; Ge, K.; Liu, H.; Duan, J.; Wang, F. North Atlantic-Pacific Salinity Contrast Enhanced by Wind and Ocean Warming. Nat. Clim. Chang. 2024, 14, 723–731. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J. Modelling of Seasonal and Long-Term Trends in Lake Salinity in Southwestern Victoria, Australia. J. Environ. Manag. 2012, 112, 149–159. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, L.; Yang, R.; Li, X.; Zhao, J.; Liu, Q. Water Resource Dynamics and Protection Strategies for Inland Lakes: A Case Study of Hongjiannao Lake. J. Environ. Manag. 2024, 355, 120462. [Google Scholar] [CrossRef]
- Ma, X.; Huang, S.; Huang, Y.; Wang, X.; Luo, Y. Evaporation from the Hypersaline Aral Sea in Central Asia. Sci. Total Environ. 2024, 908, 168412. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Miller, C.; Null, S.E.; DeRose, R.J.; Wilcock, P.; Hahnenberger, M.; Howe, F.; Moore, J. Decline of the World’s Saline Lakes. Nat. Geosci. 2017, 10, 816–821. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J. Changes in the Ecological Environment in the Daihai Lake Basin over the Last 50 Years. Arid Zone Res. 2009, 26, 162–168. [Google Scholar] [CrossRef]
- Aladin, N.V.; Gontar, V.I.; Zhakova, L.V.; Plotnikov, I.S.; Smurov, A.O.; Rzymski, P.; Klimaszyk, P. The Zoocenosis of the Aral Sea: Six Decades of Fast-Paced Change. Environ. Sci. Pollut. Res. 2019, 26, 2228–2237. [Google Scholar] [CrossRef]
- Moore, J.N. Recent Desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, USA. Sci. Total Environ. 2016, 554, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiao, S.; Liu, W.; Wang, H.; Liu, Z.; Li, X.; Zhang, P.; Liu, J. Salinity Decreases Methane Concentrations in Chinese Lakes. Sci. Total Environ. 2024, 937, 173412. [Google Scholar] [CrossRef] [PubMed]
- UN-Water. Integrated Monitoring Guide for SDG 6: Targets and Global Indicators; UN-Water: New York, NY, USA, 2016. [Google Scholar]
- United Nations. The Sustainable Development Goals Report 2024; United Nations: Geneva, Switzerland, 2024. [Google Scholar]
Lake Name | Sample Number | Salinity (ppt) | SDD (m) | ||
---|---|---|---|---|---|
Mean ± S.D. | Range (Min–Max) | Mean ± S.D. | Range (Min–Max) | ||
Hulun | 35 | 0.78 ± 0.08 | 0.54–0.86 | 0.29 ± 0.02 | 0.26–0.33 |
Dalinor | 42 | 6.42 ± 0.16 | 6.15–6.60 | 0.48 ± 0.06 | 0.36–0.54 |
Chagannaoer | 15 | 0.86 ± 0.03 | 0.83–0.92 | / | / |
Daihai | 56 | 13.56 ± 2.38 | 10.67–16.81 | 2.37 ± 1.1 | 0.63–4.80 |
Hongjiannao | 34 | 5.94 ± 0.13 | 5.82–6.30 | 1.78 ± 0.28 | 1.46–2.20 |
Nanhaizi | 3 | 1.39 ± 0.01 | 1.39–1.41 | 0.27 ± 0.02 | 0.24–0.29 |
Ulansuhai | 35 | 1.93 ± 0.64 | 0.86–3.27 | 0.88 ± 0.34 | 0.24–1.30 |
Juyan | 11 | 4.61 ± 0.11 | 4.53–4.93 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Ma, R.; Loiselle, S.A.; Hu, M.; Xue, K.; Cao, Z.; Wang, L.; Lin, C.; Gao, G. Monitoring Salinity in Inner Mongolian Lakes Based on Sentinel-2 Images and Machine Learning. Remote Sens. 2024, 16, 3881. https://doi.org/10.3390/rs16203881
Deng M, Ma R, Loiselle SA, Hu M, Xue K, Cao Z, Wang L, Lin C, Gao G. Monitoring Salinity in Inner Mongolian Lakes Based on Sentinel-2 Images and Machine Learning. Remote Sensing. 2024; 16(20):3881. https://doi.org/10.3390/rs16203881
Chicago/Turabian StyleDeng, Mingming, Ronghua Ma, Steven Arthur Loiselle, Minqi Hu, Kun Xue, Zhigang Cao, Lixin Wang, Chen Lin, and Guang Gao. 2024. "Monitoring Salinity in Inner Mongolian Lakes Based on Sentinel-2 Images and Machine Learning" Remote Sensing 16, no. 20: 3881. https://doi.org/10.3390/rs16203881
APA StyleDeng, M., Ma, R., Loiselle, S. A., Hu, M., Xue, K., Cao, Z., Wang, L., Lin, C., & Gao, G. (2024). Monitoring Salinity in Inner Mongolian Lakes Based on Sentinel-2 Images and Machine Learning. Remote Sensing, 16(20), 3881. https://doi.org/10.3390/rs16203881