Machine Learning Clustering Techniques to Support Structural Monitoring of the Valgadena Bridge Viaduct (Italy)
Abstract
:1. Introduction
2. Valgadena Bridge, Reference Leveling and Installed GNSS Stations
2.1. Reference Monitoring via Geometric Leveling
2.2. GNSS-Based Monitoring System
3. Methodology
- High-frequency GNSS position measurements for St1 and St2 were obtained by exploiting corrections from a local base station very close to St1 and St2. The obtained positions were expressed in an ad hoc local (Cartesian) coordinate reference system (CRS), where the x and y axes correspond to the bridge longitudinal and transverse horizontal directions and z to the vertical one. The use of an ad hoc local reference system was previously suggested in [58,59,60] in order to ensure the best result accuracy. Alternatively, the positions can be projected in UTM (Universal Transverse Mercator) coordinates, leading however to a minor processing precision. Then, the coordinates are separately processed as described in the following steps.
- The static/semi-static component was computed by means of low-pass filtering. Hence, the dynamic component was obtained by subtracting the outcome of the low-pass filtering step from the original signal.
- Random decrement signatures were computed in order to reduce the noise impact and ease the identification of vibration modes.
- Automatic modal analysis was implemented by executing the following steps:
- Subspace system identification of the signals collected by the GNSS receiver/s, varying the system order (i.e., the complexity of the system model), whose correct value is usually unknown.
- Apply machine learning techniques, based on the use either of DBSCAN or GMM, in order to automatically determine the repetitive presence of certain poles in models identified at the previous step, when varying the system order, while discarding non-repetitive poles, considered as outliers, e.g., typically caused by noise. A vibration mode is associated to each cluster of poles and its statistical characteristics are determined based on the values of the poles within such cluster.
3.1. Separation of the Dynamic Component
3.2. Random Decrement
3.3. Subspace System Identification
3.4. Clustering to Support Automatic OMA
- Only oscillatory modes, hence associated to vibrations in a free decay response, are considered, i.e., those associated to poles complex conjugated.
- Only poles associated to positive dampings can be associated to mechanical systems and infrastructures. Furthermore, infrastructures should realistically have damping ratios lower than a certain threshold, e.g., 20% in [53].
- Case 1A: DBSCAN applied to the coordinates of poles in .
- Case 1B: DBSCAN applied to frequencies and damping ratios associated to the poles in .
- Case 2A: GMM applied to the coordinates of poles in .
- Case 2B: GMM applied to frequencies and damping ratios associated to the poles in .
- Since a real mode should have been identified in a significant portion of the models, the value of shall be set depending on N, the number of considered models, e.g., ≈.
- (i)
- is obtained as the standard deviation of the estimates used to compute :
- (ii)
- Standard deviations and are computed by directly taking into account of the frequencies and damping ratios of the poles in all the clusters associated to in the different DBSCAN runs. It is worth to notice that the same pole may be counted several times, depending on the DBSCAN iterations where it has been considered in the cluster associated to .
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fastellini, G.; Radicioni, F.; Stoppini, A. The Assisi landslide monitoring: A multi-year activity based on geomatic techniques. Appl. Geomat. 2011, 3, 91–100. [Google Scholar] [CrossRef]
- Wenzel, H. Health Monitoring of Bridges; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Huseynov, F.; Brownjohn, J.; O’Brien, E.J.; Hester, D. Analysis of load test on composite I-girder bridge. J. Civ. Struct. Health Monit. 2017, 7, 163–173. [Google Scholar] [CrossRef]
- Kariyawasam Katukoliha Gamage, K. A Vibration-Based Bridge Scour Monitoring Technique. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2020. [Google Scholar]
- He, Z.; Li, W.; Salehi, H.; Zhang, H.; Zhou, H.; Jiao, P. Integrated structural health monitoring in bridge engineering. Autom. Constr. 2022, 136, 104168. [Google Scholar] [CrossRef]
- Yi, T.H.; Li, H.N.; Gu, M. Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge. Measurement 2013, 46, 420–432. [Google Scholar] [CrossRef]
- Dong, C.Z.; Catbas, F.N. A review of computer vision–based structural health monitoring at local and global levels. Struct. Health Monit. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Masiero, A.; Guarnieri, A.; Pirotti, F.; Vettore, A. Semi-Automated Detection of Surface Degradation on Bridges Based on a Level Set Method. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 15–21. [Google Scholar] [CrossRef]
- Selvakumaran, S.; Rossi, C.; Marinoni, A.; Webb, G.; Bennetts, J.; Barton, E.; Plank, S.; Middleton, C. Combined InSAR and terrestrial structural monitoring of bridges. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7141–7153. [Google Scholar] [CrossRef]
- Vardanega, P.J.; Webb, G.; Fidler, P.; Huseynov, F.; Kariyawasam, K.; Middleton, C. 32-Bridge monitoring. In In Innovative Bridge Design Handbook, 2nd ed.; Pipinato, A., Ed.; Butterworth-Heinemann: Oxford, UK; Elsevier: Amsterdam, The Netherlands, 2022; pp. 893–932. [Google Scholar]
- Wang, X.; Zhao, Q.; Xi, R.; Li, C.; Li, G. Review of bridge structural health monitoring based on GNSS: From displacement monitoring to dynamic characteristic identification. IEEE Access 2021, 9, 80043–80065. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, H.; Adeli, H.; Lee, I. A new approach for health monitoring of structures: Terrestrial laser scanning. Comput.-Aided Civ. Infrastruct. Eng. 2007, 22, 19–30. [Google Scholar] [CrossRef]
- Nahli, A.; Simonetto, E.; Tatin, M.; Durand, S.; Morel, L.; Lamour, V. On the combination of PsInsar and GNSS techniques for long-term bridge monitoring. In Proceedings of the XXIV ISPRS Congress 2020, Nice, France, 31 August–2 September 2020; Volume 43, pp. 325–332. [Google Scholar]
- Lazecky, M.; Perissin, D.; Bakon, M.; de Sousa, J.M.; Hlavacova, I.; Real, N. Potential of satellite InSAR techniques for monitoring of bridge deformations. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar]
- Kaloop, M.R.; Li, H. Multi input–single output models identification of tower bridge movements using GPS monitoring system. Measurement 2014, 47, 531–539. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.; Farrar, C.R.; Hemez, F.M.; Shunk, D.D.; Stinemates, D.W.; Nadler, B.R.; Czarnecki, J.J. A review of structural health monitoring literature: 1996–2001. Los Alamos Natl. Lab. USA 2003, 1, 16. [Google Scholar]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Balageas, D.; Fritzen, C.P.; Güemes, A. Structural Health Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 90. [Google Scholar]
- Chang, F.K.; Markmiller, J.F.; Yang, J.; Kim, Y. Structural health monitoring. In System Health Management: With Aerospace Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 419–428. [Google Scholar]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A systematic review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [Google Scholar] [CrossRef]
- Yuan, F.G.; Zargar, S.A.; Chen, Q.; Wang, S. Machine learning for structural health monitoring: Challenges and opportunities. Sens. Smart Struct. Technol. Civil Mech. Aerosp. Syst. 2020 2020, 11379, 1137903. [Google Scholar]
- Rizzo, P.; Enshaeian, A. Challenges in bridge health monitoring: A review. Sensors 2021, 21, 4336. [Google Scholar] [CrossRef]
- Wan, S.; Guan, S.; Tang, Y. Advancing bridge structural health monitoring: Insights into knowledge-driven and data-driven approaches. J. Data Sci. Intell. Syst. 2024, 2, 129–140. [Google Scholar] [CrossRef]
- Ko, J.; Ni, Y.Q. Technology developments in structural health monitoring of large-scale bridges. Eng. Struct. 2005, 27, 1715–1725. [Google Scholar] [CrossRef]
- Saidin, S.S.; Jamadin, A.; Abdul Kudus, S.; Mohd Amin, N.; Anuar, M.A. An overview: The application of vibration-based techniques in bridge structural health monitoring. Int. J. Concr. Struct. Mater. 2022, 16, 69. [Google Scholar] [CrossRef]
- Wang, F.; Chan, T. Review of vibration-based damage detection and condition assessment of bridge structures using structural health monitoring. In Proceedings of the Second Infrastructure Theme Postgraduate Conference: Rethinking Sustainable Development-Planning, Infrastructure Engineering, Design and Managing Urban Infrastructure, Queensland University of Technology, Brisbane, Australia, 26 March 2009; pp. 35–47. [Google Scholar]
- Deng, Z.; Huang, M.; Wan, N.; Zhang, J. The current development of structural health monitoring for bridges: A review. Buildings 2023, 13, 1360. [Google Scholar] [CrossRef]
- Ahlborn, T.; Shuchman, R.; Sutter, L.; Brooks, C.; Harris, D.; Burns, J.; Endsley, K.; Evans, D.; Vaghefi, K.; Oats, R. The State-of-the-Practice of Modern Structural Health Monitoring for Bridges: A Comprehensive Review; Technical Report; Michigan Tech: Houghton, MI, USA, 2010. [Google Scholar]
- Sun, L.; Shang, Z.; Xia, Y.; Bhowmick, S.; Nagarajaiah, S. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection. J. Struct. Eng. 2020, 146, 04020073. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wang, B.; Li, J.; Xu, Y.L. The application of deep learning in bridge health monitoring: A literature review. Adv. Bridge Eng. 2022, 3, 22. [Google Scholar] [CrossRef]
- Ibrahim, A.; Eltawil, A.; Na, Y.; El-Tawil, S. A machine learning approach for structural health monitoring using noisy data sets. IEEE Trans. Autom. Sci. Eng. 2019, 17, 900–908. [Google Scholar] [CrossRef]
- Teng, Z.; Teng, S.; Zhang, J.; Chen, G.; Cui, F. Structural damage detection based on real-time vibration signal and convolutional neural network. Appl. Sci. 2020, 10, 4720. [Google Scholar] [CrossRef]
- Quqa, S.; Martakis, P.; Movsessian, A.; Pai, S.; Reuland, Y.; Chatzi, E. Two-step approach for fatigue crack detection in steel bridges using convolutional neural networks. J. Civ. Struct. Health Monit. 2022, 12, 127–140. [Google Scholar] [CrossRef]
- Savino, P.; Tondolo, F. Automated classification of civil structure defects based on convolutional neural network. Front. Struct. Civ. Eng. 2021, 15, 305–317. [Google Scholar] [CrossRef]
- Shao, Y.; Li, L.; Li, J.; An, S.; Hao, H. Computer vision based target-free 3D vibration displacement measurement of structures. Eng. Struct. 2021, 246, 113040. [Google Scholar] [CrossRef]
- Shao, Y.; Li, L.; Li, J.; An, S.; Hao, H. Target-free 3D tiny structural vibration measurement based on deep learning and motion magnification. J. Sound Vib. 2022, 538, 117244. [Google Scholar] [CrossRef]
- Gomez-Cabrera, A.; Escamilla-Ambrosio, P.J. Review of machine-learning techniques applied to structural health monitoring systems for building and bridge structures. Appl. Sci. 2022, 12, 10754. [Google Scholar] [CrossRef]
- Xu, D.; Xu, X.; Forde, M.C.; Caballero, A. Concrete and steel bridge Structural Health Monitoring—Insight into choices for machine learning applications. Constr. Build. Mater. 2023, 402, 132596. [Google Scholar] [CrossRef]
- Roberts, G.W.; Cosser, E.; Meng, X.; Dodson, A. High frequency deflection monitoring of bridges by GPS. J. Glob. Position. Syst. 2004, 3, 226–231. [Google Scholar] [CrossRef]
- Chan, W.; Xu, Y.L.; Ding, X.; Dai, W. An integrated GPS–accelerometer data processing technique for structural deformation monitoring. J. Geod. 2006, 80, 705–719. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, S.; Meng, X.; Nguyen, D.T.; Ye, G.; Li, H. An Innovative Sensor Integrated with GNSS and Accelerometer for Bridge Health Monitoring. Remote Sens. 2024, 16, 607. [Google Scholar] [CrossRef]
- Xi, R.; Jiang, W.; Xuan, W.; Xu, D.; Yang, J.; He, L.; Ma, J. Performance Assessment of Structural Monitoring of a Dedicated High-Speed Railway Bridge Using a Moving-Base RTK-GNSS Method. Remote Sens. 2023, 15, 3132. [Google Scholar] [CrossRef]
- Poluzzi, L.; Tavasci, L.; Corsini, F.; Barbarella, M.; Gandolfi, S. Low-cost GNSS sensors for monitoring applications. Appl. Geomat. 2020, 12, 35–44. [Google Scholar] [CrossRef]
- Xue, C.; Psimoulis, P.A. Monitoring the dynamic response of a pedestrian bridge by using low-cost GNSS receivers. Eng. Struct. 2023, 284, 115993. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, J.O.; Kim, J.O. New quality control algorithm based on GNSS sensing data for a bridge health monitoring system. Sensors 2016, 16, 774. [Google Scholar] [CrossRef]
- Im, S.B.; Hurlebaus, S.; Kang, Y.J. Summary review of GPS technology for structural health monitoring. J. Struct. Eng. 2013, 139, 1653–1664. [Google Scholar] [CrossRef]
- Yu, J.; Yan, B.; Meng, X.; Shao, X.; Ye, H. Measurement of bridge dynamic responses using network-based real-time kinematic GNSS technique. J. Surv. Eng. 2016, 142, 04015013. [Google Scholar] [CrossRef]
- Au, S.K. Operational modal analysis. In Modeling, Bayesian Inference, Uncertainty Laws; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Reynders, E.; Houbrechts, J.; De Roeck, G. Fully automated (operational) modal analysis. Mech. Syst. Signal Process. 2012, 29, 228–250. [Google Scholar] [CrossRef]
- Pecorelli, M.L.; Ceravolo, R.; Epicoco, R. An automatic modal identification procedure for the permanent dynamic monitoring of the Sanctuary of Vicoforte. Int. J. Archit. Herit. 2020, 14, 630–644. [Google Scholar] [CrossRef]
- Neu, E.; Janser, F.; Khatibi, A.A.; Orifici, A.C. Fully automated operational modal analysis using multi-stage clustering. Mech. Syst. Signal Process. 2017, 84, 308–323. [Google Scholar] [CrossRef]
- Mugnaini, V.; Fragonara, L.Z.; Civera, M. A machine learning approach for automatic operational modal analysis. Mech. Syst. Signal Process. 2022, 170, 108813. [Google Scholar] [CrossRef]
- Civera, M.; Sibille, L.; Fragonara, L.Z.; Ceravolo, R. A DBSCAN-based automated operational modal analysis algorithm for bridge monitoring. Measurement 2023, 208, 112451. [Google Scholar] [CrossRef]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [Google Scholar] [CrossRef]
- Khan, K.; Rehman, S.U.; Aziz, K.; Fong, S.; Sarasvady, S. DBSCAN: Past, present and future. In Proceedings of the Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), Chennai, India, 17–19 February 2014; pp. 232–238. [Google Scholar]
- Emlid Tech Kft. Reach M2-Specification. 2024. Available online: https://emlid.com/ (accessed on 20 October 2024).
- dos Santos, R.C.; Larocca, A.P.C.; de Araújo Neto, J.O.; Barbosa, A.C.B.; Oliveira, J.V.M. Detection of a curved bridge deck vibration using robotic total stations for structural health monitoring. J. Civ. Struct. Health Monit. 2019, 9, 63–76. [Google Scholar] [CrossRef]
- Vazquez-Ontiveros, J.R.; Vazquez-Becerra, G.E.; Quintana, J.A.; Carrion, F.J.; Guzman-Acevedo, G.M.; Gaxiola-Camacho, J.R. Implementation of PPP-GNSS measurement technology in the probabilistic SHM of bridge structures. Measurement 2021, 173, 108677. [Google Scholar] [CrossRef]
- Barrile, V.; Fotia, A.; Leonardi, G.; Pucinotti, R. Geomatics and soft computing techniques for infrastructural monitoring. Sustainability 2020, 12, 1606. [Google Scholar] [CrossRef]
- Roberts, G.; Meng, X.; Dodson, A.; Cosser, E. Multipath mitigation for bridge deformation monitoring. J. Glob. Position. Syst. 2002, 1, 25–33. [Google Scholar] [CrossRef]
- Ogaja, C.; Wang, J.; Rizos, C. Detection of wind-induced response by wavelet transformed GPS solutions. J. Surv. Eng. 2003, 129, 99–104. [Google Scholar] [CrossRef]
- Yu, J.; Meng, X.; Shao, X.; Yan, B.; Yang, L. Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing. Eng. Struct. 2014, 81, 432–443. [Google Scholar] [CrossRef]
- Vandiver, J.; Dunwoody, A.; Campbell, R.; Cook, M. A mathematical basis for the random decrement vibration signature analysis technique. J. Mech. Des. 1982, 104, 307–313. [Google Scholar] [CrossRef]
- Ibrahim, S. Random decrement technique for modal identification of structures. J. Spacecr. Rocket. 1977, 14, 696–700. [Google Scholar] [CrossRef]
- Rodrigues, J.; Brincker, R. Application of the random decrement technique in operational modal analysis. In Proceedings of the 1st International Operational Modal Analysis Conference, Aalborg Universitet, Copenhagen, Denmark, 26–27 April 2005; pp. 191–200. [Google Scholar]
- Lin, C.S.; Chiang, D.Y. A modified random decrement technique for modal identification from nonstationary ambient response data only. J. Mech. Sci. Technol. 2012, 26, 1687–1696. [Google Scholar] [CrossRef]
- Lin, C.S.; Chiang, D.Y. Modal identification from nonstationary ambient response data using extended random decrement algorithm. Comput. Struct. 2013, 119, 104–114. [Google Scholar] [CrossRef]
- Vesterholm, K.K.; Brincker, R.; Brandt, A. Random decrement technique for detection and characterization of nonlinear behavior. Mech. Syst. Signal Process. 2020, 143, 106841. [Google Scholar] [CrossRef]
- Brincker, R.; Krenk, S.; Kirkegaard, P.H.; Rytter, A. Identification of Dynamical Properties from Correlation Function Estimates; Danish Society for Structural Science and Engineering: Aalborg, Denmark, 1992. [Google Scholar]
- Asmussen, J.C. Modal Analysis Based on the Random Decrement Technique: Application to Civil Engineering Structures. Ph.D. Thesis, University of Aalborg, Aalborg, Denmark, 1997. [Google Scholar]
- Kordestani, H.; Xiang, Y.Q.; Ye, X.W.; Jia, Y.K. Application of the random decrement technique in damage detection under moving load. Appl. Sci. 2018, 8, 753. [Google Scholar] [CrossRef]
- Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory—Implementation—Applications; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Viberg, M. Subspace-based methods for the identification of linear time-invariant systems. Automatica 1995, 31, 1835–1851. [Google Scholar] [CrossRef]
- Kailath, T.; Sayed, A.; Hassibi, B. Linear Estimation; Prentice-Hall: Hoboken, NJ, USA, 2000. [Google Scholar]
- Chiuso, A. The role of vector autoregressive modeling in predictor-based subspace identification. Automatica 2007, 43, 1034–1048. [Google Scholar] [CrossRef]
- Soderstrom, T. Discrete-Time Stochastic Systems; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Anderson, B.D.; Moore, J.B. Optimal Filtering; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Lindquist, A.; Picci, G. Linear stochastic systems. Ser. Contemp. Math. 2015, 1, 26. [Google Scholar]
- Mysen, E. On the equivalence of Kalman filtering and least-squares estimation. J. Geod. 2017, 91, 41–52. [Google Scholar] [CrossRef]
- Ho, B.; Kálmán, R.E. Effective construction of linear state-variable models from input/output functions: Die konstruktion von linearen modeilen in der darstellung durch zustandsvariable aus den beziehungen für ein-und ausgangsgrößen. at-Automatisierungstechnik 1966, 14, 545–548. [Google Scholar] [CrossRef]
- Oymak, S.; Ozay, N. Revisiting ho–kalman-based system identification: Robustness and finite-sample analysis. IEEE Trans. Autom. Control. 2021, 67, 1914–1928. [Google Scholar] [CrossRef]
- Beghi, A.; Cenedese, A.; Masiero, A. Stochastic realization approach to the efficient simulation of phase screens. JOSA A 2008, 25, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Hu, H.; Li, K.; Zheng, G.; Qu, Y.; Chen, H. Improvement of DBSCAN Algorithm Based on K-Dist Graph for Adaptive Determining Parameters. Electronics 2023, 12, 3213. [Google Scholar] [CrossRef]
- Kijewski-Correa, T.; Kareem, A.; Kochly, M. Experimental verification and full-scale deployment of global positioning systems to monitor the dynamic response of tall buildings. J. Struct. Eng. 2006, 132, 1242–1253. [Google Scholar] [CrossRef]
- Akaike, H. Akaike’s information criterion. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011; p. 25. [Google Scholar]
[Hz] | [Hz] | |||
---|---|---|---|---|
St1 + St2 | 0.133 | 0.009 | 0.14 | 0.07 |
St1 | 0.132 | 0.002 | 0.18 | 0.02 |
St2 | 0.134 | 0.011 | 0.13 | 0.08 |
[Hz] | [Hz] | [Hz] | ||||
---|---|---|---|---|---|---|
St1 + St2 | 0.133 | 0.002 | 0.005 | 0.17 | 0.01 | 0.01 |
St1 | 0.132 | 0.001 | 0.001 | 0.17 | 0.01 | 0.01 |
St2 | 0.135 | 0.001 | 0.007 | 0.14 | 0.02 | 0.07 |
[Hz] | [Hz] | |||
---|---|---|---|---|
St1 + St2 | 0.130 | 0.013 | 0.175 | 0.011 |
St1 | 0.132 | 0.001 | 0.167 | 0.009 |
St2 | 0.128 | 0.019 | 0.182 | 0.007 |
[Hz] | [Hz] | [Hz] | ||||
---|---|---|---|---|---|---|
St1 + St2 | 0.133 | 0.002 | 0.005 | 0.174 | 0.021 | 0.007 |
St1 | 0.133 | 0.001 | 0.001 | 0.164 | 0.003 | 0.007 |
St2 | 0.130 | 0.002 | 0.012 | 0.176 | 0.003 | 0.006 |
Case | [Hz] | [Hz] | ||
---|---|---|---|---|
2A: St1 + St2 | 0.135 | 0.003 | 0.14 | 0.04 |
2A: St1 | 0.136 | 0.002 | 0.14 | 0.03 |
2A: St2 | 0.134 | 0.003 | 0.13 | 0.04 |
2B: St1 + St2 | 0.134 | 0.004 | 0.17 | 0.03 |
2B: St1 | 0.132 | 0.002 | 0.17 | 0.02 |
2B: St2 | 0.138 | 0.022 | 0.19 | 0.03 |
Case | [Hz] | [Hz] | [Hz] | |||
---|---|---|---|---|---|---|
1A | 0.133 | 0.17 | 0.92 | 0.005 | 1.897 | 0.0018 |
1B | 0.133 | 0.174 | 0.92 | 0.005 | 1.897 | 0.0018 |
2A | 0.135 | 0.14 | 0.93 | 0.008 | 1.900 | 0.0011 |
2B | 0.134 | 0.17 | 0.92 | 0.004 | 1.901 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masiero, A.; Guarnieri, A.; Baiocchi, V.; Visintini, D.; Pirotti, F. Machine Learning Clustering Techniques to Support Structural Monitoring of the Valgadena Bridge Viaduct (Italy). Remote Sens. 2024, 16, 3971. https://doi.org/10.3390/rs16213971
Masiero A, Guarnieri A, Baiocchi V, Visintini D, Pirotti F. Machine Learning Clustering Techniques to Support Structural Monitoring of the Valgadena Bridge Viaduct (Italy). Remote Sensing. 2024; 16(21):3971. https://doi.org/10.3390/rs16213971
Chicago/Turabian StyleMasiero, Andrea, Alberto Guarnieri, Valerio Baiocchi, Domenico Visintini, and Francesco Pirotti. 2024. "Machine Learning Clustering Techniques to Support Structural Monitoring of the Valgadena Bridge Viaduct (Italy)" Remote Sensing 16, no. 21: 3971. https://doi.org/10.3390/rs16213971
APA StyleMasiero, A., Guarnieri, A., Baiocchi, V., Visintini, D., & Pirotti, F. (2024). Machine Learning Clustering Techniques to Support Structural Monitoring of the Valgadena Bridge Viaduct (Italy). Remote Sensing, 16(21), 3971. https://doi.org/10.3390/rs16213971