Impact of Arable Land Abandonment on Crop Production Losses in Ukraine During the Armed Conflict
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data Sources
2.3. Methodological Framework
2.3.1. Abandoned Cropland
2.3.2. Crop Production Losses Calculation
2.3.3. Spatial Analysis of Ratios of Abandoned Cropland and Production Losses
- (1)
- High-High (H-H) denotes regions characterized by both high crop production and high abandonment rates, suggesting that areas with substantial production volumes have experienced significant reductions.
- (2)
- Low-Low (L-L) signifies both low crop production and low abandonment rates, indicating that crop production in these regions is relatively modest, and the issue of cropland abandonment is comparatively mild.
- (3)
- Low-High (L-H) stands for low production and high abandonment rate. It suggests that although these regions have witnessed more abandonment of cropland, their original crop production was relatively low.
- (4)
- High-Low (H-L) represents high crop production but low abandonment rate, indicating that the crop production is relatively high and the abandonment of cultivated land is not severe.
3. Results
3.1. Abandoned Cropland Distribution
3.2. Calibrated Crop Production
3.3. Crop Production Losses
3.4. Spatial Heterogeneity of Crop Production Losses
4. Discussion
4.1. Comparison with Previous Estimates
4.2. Factors Influencing Cropland Abandonment
4.3. Policy Implications
4.4. Limitations and Future Prospects
5. Conclusions
- (1)
- The Russia-Ukraine conflict has led to the abandonment of over 2.34 million hectares of cropland in Ukraine, accounting for more than 7% of the total cropland area. In addition, the abandoned cropland area in Ukrainian-controlled regions is approximately 1.5 times larger than that in Russian-occupied territories.
- (2)
- Crop production losses due to cropland abandonment in Ukraine amount to 1.92, 1.67, 0.70, and 0.99 million tons for wheat, maize, barley, and sunflower, respectively. Moreover, crop production is worse in Ukrainian-controlled areas than in Russian-occupied zones.
- (3)
- The crop production losses of Ukraine are concentrated in the war frontline areas of the eastern and southern and the western regions affected by population outflow.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naddaf, M. Ukraine Dam Collapse: What Scientists Are Watching. Nature 2023, 618, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, J. What the War in Ukraine Means for Energy, Climate and Food. Nature 2022, 604, 232–233. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Arneth, A.; Henry, R.; Maire, J.; Rabin, S.; Rounsevell, M.D.A. High Energy and Fertilizer Prices Are More Damaging than Food Export Curtailment from Ukraine and Russia for Food Prices, Health and the Environment. Nat. Food 2023, 4, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. The Importance of Ukraine and the Russian Federation for Global Agricultural Markets and the Risks Associated with the War in Ukraine; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Chepeliev, M.; Maliszewska, M.; Pereira, M.F.S.e. The War in Ukraine, Food Security and the Role for Europe. EuroChoices 2023, 22, 4–13. [Google Scholar] [CrossRef]
- Oxford Analytica. Ukraine grain imports test EU unity. Expert Brief. 2023. [Google Scholar] [CrossRef]
- Da Costa, J.P.; Silva, A.L.; Barcelò, D.; Rocha-Santos, T.; Duarte, A. Threats to Sustainability in Face of Post-Pandemic Scenarios and the War in Ukraine. Sci. Total Environ. 2023, 892, 164509. [Google Scholar] [CrossRef]
- Food and Agriculture Organization FAO Food Price Index. Available online: https://www.fao.org/worldfoodsituation/foodpricesindex/en/ (accessed on 1 July 2023).
- International Food Policy Research Institute Eastern European Farmers Protest Gluts of Ukraine Food Exports: The Struggle to Keep Solidarity Lanes Open. Available online: https://www.ifpri.org/blog/eastern-european-farmers-protest-gluts-ukraine-food-exports-struggle-keep-solidarity-lanes (accessed on 1 July 2023).
- The United Nations Commodity Trade Statistics Database. Available online: https://comtradeplus.un.org (accessed on 15 June 2023).
- Ben Aoun, W.; Cerrani, I.; Claverie, M.; Lemoine, G.; Nisini, S.L.; Panarello, L.; Ronchetti, G.; Sedano, S.F.; Baruth, B. JRC MARS Bulletin—Global Outlook—Crop Monitoring European Neighbourhood—Ukraine—June 2022. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC127973 (accessed on 6 July 2023).
- Nair, S.S.; Reshef, I.B.; Wagner, J.; Sadeh, Y.; Hosseini, M.; Khabbazan, S.; Skakun, S.; Munshell, B.; Baber, S.; Duncan, E.; et al. A Rapid Assessment Framework to Monitor Harvest Progress in Ukraine; Copernicus Meetings; NASA: Washington, DC, USA, 2023.
- National Aeronautics and Space Administration Larger Wheat Harvest in Ukraine Than Expected. Available online: https://earthobservatory.nasa.gov/images/150590/larger-wheat-harvest-in-%20%20ukraine-than-expected (accessed on 31 March 2023).
- Wagner, J.; Becker-Reshef, I.; Nair, S.; Skakun, S.; Sadeh, Y.; Baber, S.; Munshel, B.; Zolli, A.; Nerry, F. Season Progressive Crop Type Mapping in War Affected Ukraine; Copernicus Meetings; NASA: Washington, DC, USA, 2023.
- Deininger, K.; Ali, D.A.; Kussul, N.; Shelestov, A.; Lemoine, G.; Yailimova, H. Quantifying War-Induced Crop Losses in Ukraine in near Real Time to Strengthen Local and Global Food Security. Food Policy 2023, 115, 102418. [Google Scholar] [CrossRef]
- Gibson, G.R.; Taylor, N.L.; Lamo, N.C.; Lackey, J.K. Effects of Recent Instability on Cultivated Area Along the Euphrates River in Iraq. Prof. Geogr. 2017, 69, 163–176. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Fan, Z.; Mi, L.; Kandakji, T.; Song, Z.; Li, D.; Song, X.-P. Civil War Hinders Crop Production and Threatens Food Security in Syria. Nat. Food 2022, 3, 38–46. [Google Scholar] [CrossRef]
- Olsen, V.M.; Fensholt, R.; Olofsson, P.; Bonifacio, R.; Butsic, V.; Druce, D.; Ray, D.; Prishchepov, A.V. The Impact of Conflict-Driven Cropland Abandonment on Food Insecurity in South Sudan Revealed Using Satellite Remote Sensing. Nat. Food 2021, 2, 990–996. [Google Scholar] [CrossRef]
- Skakun, S.; Justice, C.O.; Kussul, N.; Shelestov, A.; Lavreniuk, M. Satellite Data Reveal Cropland Losses in South-Eastern Ukraine Under Military Conflict. Front. Earth Sci. 2019, 7, 305. [Google Scholar] [CrossRef]
- Sticher, V.; Wegner, J.D.; Pfeifle, B. Toward the Remote Monitoring of Armed Conflicts. PNAS Nexus 2023, 2, pgad181. [Google Scholar] [CrossRef] [PubMed]
- Kussul, N.; Shelestov, A.; Yailymov, B.; Yailymova, H. Analysis of Cultivated Areas in Ukraine During the War. In Proceedings of the 2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, 9–11 December 2022; pp. 1–4. [Google Scholar]
- Ma, Y.; Lyu, D.; Sun, K.; Li, S.; Zhu, B.; Zhao, R.; Zheng, M.; Song, K. Spatiotemporal Analysis and War Impact Assessment of Agricultural Land in Ukraine Using RS and GIS Technology. Land 2022, 11, 1810. [Google Scholar] [CrossRef]
- Solokha, M.; Pereira, P.; Symochko, L.; Vynokurova, N.; Demyanyuk, O.; Sementsova, K.; Inacio, M.; Barcelo, D. Russian-Ukrainian War Impacts on the Environment. Evidence from the Field on Soil Properties and Remote Sensing. Sci. Total Environ. 2023, 902, 166122. [Google Scholar] [CrossRef]
- Lin, F.; Li, X.; Jia, N.; Feng, F.; Huang, H.; Huang, J.; Fan, S.; Ciais, P.; Song, X.-P. The Impact of Russia-Ukraine Conflict on Global Food Security. Glob. Food Secur. 2023, 36, 100661. [Google Scholar] [CrossRef]
- He, T.; Zhang, M.; Xiao, W.; Zhai, G.; Wang, Y.; Guo, A.; Wu, C. Quantitative Analysis of Abandonment and Grain Production Loss under Armed Conflict in Ukraine. J. Clean. Prod. 2023, 412, 137367. [Google Scholar] [CrossRef]
- United States Department of Agriculture Ukraine Production. Available online: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=UP (accessed on 4 July 2023).
- Copernicus Sentinel-2 (processed by ESA), 2021, MSI Level-2A BOA Reflectance Product. Collection 1. European Space Agency. Available online: https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a (accessed on 8 November 2024).
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100. 2021. Available online: https://zenodo.org/records/5571936 (accessed on 8 November 2024).
- Yu, Q.; You, L.; Wood-Sichra, U.; Ru, Y.; Joglekar, A.K.B.; Fritz, S.; Xiong, W.; Lu, M.; Wu, W.; Yang, P. A Cultivated Planet in 2010—Part 2: The Global Gridded Agricultural-Production Maps. Earth System Science Data 2020, 12, 3545–3572. [Google Scholar] [CrossRef]
- Avtar, R.; Kouser, A.; Kumar, A.; Singh, D.; Misra, P.; Gupta, A.; Yunus, A.P.; Kumar, P.; Johnson, B.A.; Dasgupta, R.; et al. Remote Sensing for International Peace and Security: Its Role and Implications. Remote Sens. 2021, 13, 439. [Google Scholar] [CrossRef]
- Xiao, G.; Zhu, X.; Hou, C.; Xia, X. Extraction and Analysis of Abandoned Farmland: A Case Study of Qingyun and Wudi Counties in Shandong Province. J. Geogr. Sci. 2019, 29, 581–597. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS Night-Time Light Images to Evaluate City Light Dynamics of Syria’s Major Human Settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Liu, B.; Song, W. Mapping Abandoned Cropland Using Within-Year Sentinel-2 Time Series. Catena 2023, 223, 106924. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- You, L.; Sun, Z. Mapping Global Cropping System: Challenges, Opportunities, and Future Perspectives. Crop Environ. 2022, 1, 68–73. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAOSTAT Statistical Database; Food and Agriculture Organization: Rome, Italy, 2023. [Google Scholar]
- Anselin, L.; Syabri, I.; Smirnov, O. Visualizing Multivariate Spatial Correlation with Dynamically Linked Windows; University of Illinois: Urbana, IL, USA, 2002. [Google Scholar]
- Zhu, B.; Fu, Y.; Liu, J.; He, R.; Zhang, N.; Mao, Y. Detecting the Priority Areas for Health Workforce Allocation with LISA Functions: An Empirical Analysis for China. BMC Health Serv. Res. 2018, 18, 957. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point (SOLAW 2021); FAO: Rome, Italy, 2021; ISBN 978-92-5-135327-1. [Google Scholar]
- Ben Aoun, W.; Claverie, M.; Lemoine, G.; Ronchetti, G.; Sedano, S.F.; Cerrani, I.; Nisini, S.L.; Panarello, L. JRC MARS Bulletin—Global Outlook—Crop Monitoring European Neighbourhood—Ukraine—September 2022. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC127974 (accessed on 4 July 2023).
- Welsh, C.; Glauber, J. Food as the “Silent Weapon”: Russia’s Gains and Ukraine’s Losses; Intl Food Policy Res Inst: Washington, DC, USA, 2024. [Google Scholar]
- Food and Agriculture Organization. Impact of the Ukraine-Russia Conflict on Global Food Security and Related Matters under the Mandate of the Food and Agriculture Organization of the United Nation (FAO); CL 170/6; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Russia Reports Poor Harvest, Ukraine Bumper Crop in 2021. Available online: https://www.intellinews.com/russia-reports-poor-harvest-ukraine-bumper-crop-in-2021-231397/ (accessed on 2 November 2024).
- Lloyd, J. When Farmland Becomes the Front Line, Satellite Data and Analysis Can Fight Hunger. Issues Sci. Technol. 2024, 40, 32. [Google Scholar]
- Polovyy, V.; Hnativ, P.; Balkovskyy, V.; Ivaniuk, V.; Lahush, N.; Shestak, V.; Szulc, W.; Rutkowska, B.; Lukashchuk, L.; Lukyanik, M.; et al. The Influence of Climate Changes on Crop Yields in Western Ukraine. Ukr. J. Ecol. 2021, 11, 384–390. [Google Scholar]
- Osendarp, S.; Verburg, G.; Bhutta, Z.; Black, R.E.; de Pee, S.; Fabrizio, C.; Headey, D.; Heidkamp, R.; Laborde, D.; Ruel, M.T. Act Now before Ukraine War Plunges Millions into Malnutrition. Nature 2022, 604, 620–624. [Google Scholar] [CrossRef]
- UNHCR Situation Ukraine Refugee Situation. Available online: https://data.unhcr.org/en/situations/ukraine (accessed on 7 July 2023).
- Zhukov, Y.M. Near-Real Time Analysis of War and Economic Activity during Russia’s Invasion of Ukraine. J. Comp. Econ. 2023, 51, 1232–1243. [Google Scholar] [CrossRef]
- Pereira, P.; Bašić, F.; Bogunovic, I.; Barcelo, D. Russian-Ukrainian War Impacts the Total Environment. Sci. Total Environ. 2022, 837, 155865. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Lu, G.; Xu, Z.; Yan, X.; Khu, S.-T.; Yang, J.; Zhao, J. Influence of Russia-Ukraine War on the Global Energy and Food Security. Resour. Conserv. Recycl. 2023, 188, 106657. [Google Scholar] [CrossRef]
- Balma, L.; Heidland, T.; Jävervall, S.; Mahlkow, H.; Mukasa, A.N.; Woldemichael, A. Long-Run Impacts of the Conflict in Ukraine on Food Security in Africa; Kiel Policy Brief; Kiel Institute for the World Economy (IfW Kiel): Kiel, Germany, 2022. [Google Scholar]
- Glauber, J.; Mcnamara, B.; Olivetti, E. Increased Tensions in Ukraine Again Threaten the Black Sea Grain Initiative | IFPRI: International Food Policy Research Institute. Available online: https://www.ifpri.org/blog/increased-tensions-ukraine-again-threaten-black-sea-grain-initiative (accessed on 7 July 2023).
- Laber, M.; Klimek, P.; Bruckner, M.; Yang, L.; Thurner, S. Shock Propagation from the Russia–Ukraine Conflict on International Multilayer Food Production Network Determines Global Food Availability. Nat. Food 2023, 4, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Legrand, N. War in Ukraine: The Rational “Wait-and-See” Mode of Global Food Markets. Appl. Econ. Perspect. Policy 2023, 45, 626–644. [Google Scholar] [CrossRef]
- Kolodiichuk, V.A.; Tofan, I.M.; Kolodiichuk, I.A.; Voronyj, I.V. Perspectives of Farm Development Under the War Conditions in Ukraine. Eur. J. Bus. Sci. Technol. 2024, 10, 81–95. [Google Scholar] [CrossRef]
- Leal Filho, W.; Fedoruk, M.; Paulino Pires Eustachio, J.H.; Barbir, J.; Lisovska, T.; Lingos, A.; Baars, C. How the War in Ukraine Affects Food Security. Foods 2023, 12, 3996. [Google Scholar] [CrossRef]
- Behnassi, M.; El Haiba, M. Implications of the Russia–Ukraine War for Global Food Security. Nat. Hum. Behav. 2022, 6, 754–755. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Medhi, H.; Bhattacharyya, K.G.; Hussain, C.M. Severe Deterioration in Food-Energy-Ecosystem Nexus Due to Ongoing Russia-Ukraine War: A Critical Review. Sci. Total Environ. 2023, 902, 166131. [Google Scholar] [CrossRef]
- Halecki, W.; Bedla, D. Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis. Resources 2022, 11, 118. [Google Scholar] [CrossRef]
- Carriquiry, M.; Dumortier, J.; Elobeid, A. Trade Scenarios Compensating for Halted Wheat and Maize Exports from Russia and Ukraine Increase Carbon Emissions without Easing Food Insecurity. Nat. Food 2022, 3, 847–850. [Google Scholar] [CrossRef]
- Feng, F.; Jia, N.; Lin, F. Quantifying the Impact of Russia–Ukraine Crisis on Food Security and Trade Pattern: Evidence from a Structural General Equilibrium Trade Model. China Agric. Econ. Rev. 2023, 15, 241–258. [Google Scholar] [CrossRef]
- Poursina, D.; Schaefer, K.A.; Hilburn, S.; Johnson, T. Economic Impacts of the Black Sea Grain Initiative. J. Agric. Econ. 2023, 75, 457–464. [Google Scholar] [CrossRef]
- Pedrozo, R. The Black Sea Grain Initiative: Russia’s Strategic Blunder or Diplomatic Coup? Int. Law Stud. 2023, 100, 12. [Google Scholar]
- Lesk, C. Stronger Temperature–Moisture Couplings Exacerbate the Impact of Climate Warming on Global Crop Yields. Nat. Food 2021, 2, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shao, C.; Niu, G.; Xu, D.; Gao, Y.; Yuan, B. Calibration for Improving the Medium-Range Soil Forecast over Central Tibet: Effects of Objective Metrics’ Diversity. Atmosphere 2024, 15, 1107. [Google Scholar] [CrossRef]
- Wallace, C.S.A.; Thenkabail, P.; Rodriguez, J.R.; Brown, M.K. Fallow-Land Algorithm Based on Neighborhood and Temporal Anomalies (FANTA) to Map Planted versus Fallowed Croplands Using MODIS Data to Assist in Drought Studies Leading to Water and Food Security Assessments. GIScience Remote Sens. 2017, 54, 258–282. [Google Scholar] [CrossRef]
- Yu, Q.; Duan, Y.; Wu, Q.; Liu, Y.; Wen, C.; Qian, J.; Song, Q.; Li, W.; Sun, J.; Wu, W. An Interactive and Iterative Method for Crop Mapping through Crowdsourcing Optimized Field Samples. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103409. [Google Scholar] [CrossRef]
Name | Type | Resolution | Period | Source |
---|---|---|---|---|
Sentinel-2A | Raster | 10 m | 2019–2022 | [27] |
ESA WorldCover 2020 v100 | Raster | 10 m | 2020 | [28] |
SPAM 2010 v2.0 | Raster | 10 km | 2010 | [29] |
Crop statistics data | Plain text | - | 2017–2021 | https://www.ukrstat.gov.ua (accessed on 13 July 2023) |
GEOGLAM data | Plain text | - | 2017–2022 | https://www.nasaharvest.org (accessed on 1 July 2023) |
IPAD data | Plain text | - | 2017–2023 | https://ipad.fas.usda.gov (accessed on 1 July 2023) |
Ukraine administration boundary | Vector | - | 2022 | https://gadm.org (accessed on 20 June 2023) |
Russia-Ukraine controlled area | Vector | - | 2022 | https://liveuamap.com (accessed on 25 June 2023) |
USDA * 2023 | MARS ** 2022/6 | MARS 2022/8 | This Study | He et al., 2023 [25] | Lin et al., 2023 [24] | Wagner et al., 2023 [14] | |
---|---|---|---|---|---|---|---|
Wheat | −25% | −1% | −4% | −9% | Eastern states production losses 7% | Nationwide winter wheat losses 25% | Nationwide winter crop harvested 94% |
Maize | −20% | −30% | −5% | −7% | |||
Barly | −30% | −20% | −18% | −10% | |||
Sunflower | −32% | −15% | −2% | −9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, K.; Cheng, C.; Kan, S.; Li, Y.; Liu, K.; Wu, X. Impact of Arable Land Abandonment on Crop Production Losses in Ukraine During the Armed Conflict. Remote Sens. 2024, 16, 4207. https://doi.org/10.3390/rs16224207
Dai K, Cheng C, Kan S, Li Y, Liu K, Wu X. Impact of Arable Land Abandonment on Crop Production Losses in Ukraine During the Armed Conflict. Remote Sensing. 2024; 16(22):4207. https://doi.org/10.3390/rs16224207
Chicago/Turabian StyleDai, Kaixuan, Changxiu Cheng, Siyi Kan, Yaoming Li, Kunran Liu, and Xudong Wu. 2024. "Impact of Arable Land Abandonment on Crop Production Losses in Ukraine During the Armed Conflict" Remote Sensing 16, no. 22: 4207. https://doi.org/10.3390/rs16224207
APA StyleDai, K., Cheng, C., Kan, S., Li, Y., Liu, K., & Wu, X. (2024). Impact of Arable Land Abandonment on Crop Production Losses in Ukraine During the Armed Conflict. Remote Sensing, 16(22), 4207. https://doi.org/10.3390/rs16224207