A Knowledge Base Driven Task-Oriented Image Semantic Communication Scheme
Abstract
:1. Introduction
- 1.
- A task-oriented scheme of image semantic information transmission is proposed, which is driven by a knowledge base. We designed construction and interactive update mechanism for task knowledge base, which can adjust the process of semantic communication to adopt the dynamic changes in tasks. Experimental results demonstrate that this method significantly improves the performance of weighted learned perceptual image patch similarity (LPIPS) and shows a high target capture rate in the target detection task.
- 2.
- For unmanned end, we utilize Yolo-World and SAM to segment images into relevant semantic information units driven by task requirements. We propose a bandwidth allocation algorithm to assign bandwidth to each unit based on task relevance scores and bandwidth conditions. Lastly, we compress units based on the assigned bandwidth to realize multi-scale image compression.
- 3.
- For the control end, we propose an image reconstruction algorithm based on OpenCV to reconstruct images according to the received semantic information units. We introduce an information supplement mechanism to increase the visual quality of reconstructed images.
2. Related Works
3. System Model
3.1. Knowledge Base
Algorithm 1: Algorithms for knowledge base updating and task information generation. |
|
Algorithm 2: Algorithm for knowledge base updating and calling. |
|
3.2. Unmanned End
- 1.
- Key semantic information units where relevance scores ;
- 2.
- General semantic information units where relevance scores ;
- 3.
- Redundant semantic information units where relevance scores .
Algorithm 3: Adaptive bandwidth allocation. |
|
3.3. Control End
4. Experimental Results
4.1. Results Under Different Task Guidance
4.2. Image Reconstruction Quality Assessment
4.3. Task Performance Evaluation
4.4. Ablation Study
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Q.; Su, Z.; Fang, D.; Wu, Y. BASIC: Distributed Task Assignment with Auction Incentive in UAV-Enabled Crowdsensing System. IEEE Trans. Veh. Technol. 2024, 73, 2416–2430. [Google Scholar] [CrossRef]
- Hu, G.; Ye, R.; Wan, M.; Bao, W.; Zhang, Y.; Zeng, W. Detection of Tea Leaf Blight in Low-Resolution UAV Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5601218. [Google Scholar] [CrossRef]
- Dai, Y.; Tan, J.; Wang, M.; Jiang, C.; Li, M. A Convolutional Neural Network Image Compression Algorithm for UAVs. J. Circuits Syst. Comput. 2024, 33, 2450211. [Google Scholar] [CrossRef]
- Zheng, Q.; Saponara, S.; Tian, X.; Yu, Z.; Elhanashi, A.; Yu, R. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT. Cogn. Neurodyn. 2024, 18, 659–671. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Zhang, D.; Wang, H. MR-DCAE: Manifold regularization-based deep convolutional autoencoder for unauthorized broadcasting identification. Int. J. Intell. Syst. 2021, 36, 7204–7238. [Google Scholar] [CrossRef]
- Huang, D.; Tao, X.; Gao, F.; Lu, J. Deep Learning-Based Image Semantic Coding for Semantic Communications. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Lan, Q.; Wen, D.; Zhang, Z.; Zeng, Q.; Chen, X.; Popovski, P.; Huang, K. What Is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence. J. Commun. Inf. Networks 2021, 6, 336–371. [Google Scholar] [CrossRef]
- Wu, J.; Wu, C.; Lin, Y.; Yoshinaga, T.; Zhong, L.; Chen, X.; Ji, Y. Semantic Segmentation-Based Semantic Communication System for Image Transmission. Digit. Commun. Networks 2024, 10, 519–527. [Google Scholar] [CrossRef]
- Shannon, C.; Weaver, W. The Mathematical Theory of Communication. Philos. Rev. 1949, 60, 398–400. [Google Scholar]
- Carnap, R.; Bar-Hillel, Y. An Outline of a Theory of Semantic Information. J. Symb. Log. 1954, 19, 230–232. [Google Scholar] [CrossRef]
- Bao, J.; Basu, P.; Dean, M.; Partridge, C.; Swami, A.; Leland, W.; Hendler, J.A. Towards a Theory of Semantic Communication. In Proceedings of the 2011 IEEE Network Science Workshop, West Point, NY, USA, 22–24 June 2011; pp. 110–117. [Google Scholar] [CrossRef]
- Niu, K.; Zhang, P. A mathematical theory of semantic communication. J. Commun. 2024, 45, 7–59. [Google Scholar] [CrossRef]
- Dai, J.; Wang, S.; Tan, K.; Si, Z.; Qin, X.; Niu, K.; Zhang, P. Nonlinear Transform Source-Channel Coding for Semantic Communications. IEEE J. Sel. Areas Commun. 2022, 40, 2300–2316. [Google Scholar] [CrossRef]
- Dong, C.; Liang, H.; Xu, X.; Han, S.; Wang, B.; Zhang, P. Semantic Communication System Based on Semantic Slice Models Propagation. IEEE J. Sel. Areas Commun. 2023, 41, 202–213. [Google Scholar] [CrossRef]
- Yoo, H.; Jung, T.; Dai, L.; Kim, S.; Chae, C.B. Demo: Real-Time Semantic Communications with a Vision Transformer. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea, 16–20 May 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Li, A.; Liu, X.; Wang, G.; Zhang, P. Domain Knowledge Driven Semantic Communication for Image Transmission Over Wireless Channels. IEEE Wirel. Commun. Lett. 2023, 12, 55–59. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, W.; Wu, Y.; Li, H.; Shi, G.; Gao, D.; Shi, Y.; Li, S.; Al-Dhahir, N. Features Disentangled Semantic Broadcast Communication Networks. arXiv 2023, arXiv:2303.01892. Available online: http://arxiv.org/abs/2303.01892 (accessed on 9 September 2024). [CrossRef]
- Peng, X.; Qin, Z.; Tao, X.; Lu, J.; Letaief, K.B. A Robust Semantic Communication System for Image. arXiv 2024, arXiv:2403.09222. Available online: http://arxiv.org/abs/2403.09222 (accessed on 9 September 2024).
- Tian, Z.; Vo, H.; Zhang, C.; Min, G.; Yu, S. An Asynchronous Multi-Task Semantic Communication Method. IEEE Netw. 2023, 38, 275–283. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, S.; Tao, M.; Bi, X.; Letaief, K.B. Deep Learning-Enabled Semantic Communication Systems with Task-Unaware Transmitter and Dynamic Data. IEEE J. Sel. Areas Commun. 2023, 41, 170–185. [Google Scholar] [CrossRef]
- Liang, C.; Li, D.; Lin, Z.; Cao, H. Selection-Based Image Generation for Semantic Communication Systems. IEEE Commun. Lett. 2024, 28, 34–38. [Google Scholar] [CrossRef]
- Qiao, L.; Mashhadi, M.B.; Gao, Z.; Foh, C.H.; Xiao, P.; Bennis, M. Latency-Aware Generative Semantic Communications with Pre-Trained Diffusion Models. IEEE Wirel. Commun. Lett. 2024, 13, 2652–2656. [Google Scholar] [CrossRef]
- Weaver, W. Recent Contributions to The Mathematical Theory of Communication. ETC A Rev. Gen. Semant. 1953, 10, 261–281. [Google Scholar]
- Zhong, Y. A Theory of Semantic Information. China Commun. 2017, 14, 1–17. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, C.; Liu, F.; Liu, C.; Sun, L.; Sun, Q.; Chen, J. Semantic Communications with Artificial Intelligence Tasks: Reducing Bandwidth Requirements and Improving Artificial Intelligence Task Performance. IEEE Ind. Electron. Mag. 2023, 17, 4–13. [Google Scholar] [CrossRef]
- Sun, Q.; Guo, C.; Yang, Y.; Chen, J.; Xue, X. Semantic-Assisted Image Compression. arXiv 2022, arXiv:2201.12599. Available online: http://arxiv.org/abs/2201.12599 (accessed on 9 September 2024).
- Fan, S.; Liang, H.; Dong, C.; Xu, X.; Liu, G. A Specific Task-Oriented Semantic Image Communication System for Substation Patrol Inspection. IEEE Trans. Power Deliv. 2024, 39, 835–844. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, W.; Wu, Y.; Li, H.; Shi, G.; Gao, D.; Shi, Y.; Li, S.; Al-Dhahir, N. Task-Oriented Explainable Semantic Communications. IEEE Trans. Wirel. Commun. 2023, 22, 9248–9262. [Google Scholar] [CrossRef]
- Huang, D.; Gao, F.; Tao, X.; Du, Q.; Lu, J. Toward Semantic Communications: Deep Learning-Based Image Semantic Coding. IEEE J. Sel. Areas Commun. 2023, 41, 55–71. [Google Scholar] [CrossRef]
- Semantic Drone Dataset. Available online: https://www.tugraz.at/index.php?id=22387 (accessed on 10 July 2024).
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 586–595. [Google Scholar] [CrossRef]
- Yu, W.; Cheng, G.; Wang, M.; Yao, Y.; Xie, X.; Yao, X.; Han, J. MAR20: A Benchmark for Military Aircraft Recognition in Remote Sensing Images. Natl. Remote Sens. Bull. 2023, 27, 2688–2696. [Google Scholar] [CrossRef]
- Osco, L.P.; Nogueira, K.; Ramos, A.P.M.; Pinheiro, M.M.F.; Santos, J.A.D. Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery. Precis. Agric. 2021, 22, 1171–1188. [Google Scholar] [CrossRef]
- Rajani, D.C. Low and mid-level features for target detection in satellite images. Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 212438858. [Google Scholar]
- Wang, Z.; Yang, P.; Liang, H.; Cui, W. Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery. Remote. Sens. 2021, 14, 45. [Google Scholar] [CrossRef]
- Gottschalk, S.; Demidova, E. EventKG+TL: Creating Cross-Lingual Timelines from an Event-Centric Knowledge Graph. In Proceedings of the ESWC 2018 Satellite Events, Heraklion, Crete, Greece, 3–7 June 2018. [Google Scholar]
- Wang, W.; Zhu, D.; Hu, K. A channel-gained single-model network with variable rate for multispectral image compression in UAV air-to-ground remote sensing. Multimed. Syst. 2024, 30, 193. [Google Scholar] [CrossRef]
- Chaudhary, P.K. FBSE-Based JPEG Image Compression. IEEE Sensors Lett. 2024, 8, 7001104. [Google Scholar] [CrossRef]
- Barman, D.; Hasnat, A.; Begum, S.; Barman, B. A deep learning based multi-image compression technique. Signal Image Video Process. 2024, 18, 407–416. [Google Scholar] [CrossRef]
Hyperparameter | Value |
---|---|
Confidence in Semantic Segmentation | |
Confidence in Target Detection (performance analysis) | |
Image fusion weight | 1 |
Image fusion weight | 1 |
Information unit classification threshold | 1 |
Information unit classification threshold | 1 |
Method | LPIPS | Target Acquisition |
---|---|---|
Scheme without Knowledge Base | ||
Scheme without Yolo-World | ||
Scheme without Bandwidth Allocation | ||
Complete Scheme |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Xi, J.; He, Z.; Liu, J.; Yang, J. A Knowledge Base Driven Task-Oriented Image Semantic Communication Scheme. Remote Sens. 2024, 16, 4044. https://doi.org/10.3390/rs16214044
Guo C, Xi J, He Z, Liu J, Yang J. A Knowledge Base Driven Task-Oriented Image Semantic Communication Scheme. Remote Sensing. 2024; 16(21):4044. https://doi.org/10.3390/rs16214044
Chicago/Turabian StyleGuo, Chang, Junhua Xi, Zhanhao He, Jiaqi Liu, and Jungang Yang. 2024. "A Knowledge Base Driven Task-Oriented Image Semantic Communication Scheme" Remote Sensing 16, no. 21: 4044. https://doi.org/10.3390/rs16214044
APA StyleGuo, C., Xi, J., He, Z., Liu, J., & Yang, J. (2024). A Knowledge Base Driven Task-Oriented Image Semantic Communication Scheme. Remote Sensing, 16(21), 4044. https://doi.org/10.3390/rs16214044