Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024
Abstract
:1. Introduction
2. Data and Methods
2.1. Different Data Types
2.1.1. Indices Describing the Manifestation of Selected Geomagnetic Storms
2.1.2. Ionospheric Data
- Global TEC maps
- Data for O/N2
2.2. Methods
- Modified dip (modip) latitude of ionospheric data
- Relative deviations of the ionosphere
- Method of stationary amplitudes and phases
3. Results
3.1. Solar and Geomagnetic Parameters
3.1.1. Solar Wind Indices
3.1.2. Geomagnetic Indices
3.2. Spatial Distribution of Relative TEC Response
3.3. Latitudinal Structure
3.4. Stationary Amplitudes, Phases and Phases Velocity
4. Discussion
5. Conclusions
- The presentation of GTID1 by the method of quasi-stationary wave amplitudes and phases is discussed in detail to describe the positive TEC anomaly in the two polar ovals in the midnight sector at modip latitudes around 60°.
- During the day, as a result of the redistribution of gases and an increase in recombination, a negative ionospheric response is observed. The quasi-stationary wave formed in this case migrates in a westward direction with a speed almost coinciding with the speed of the movement of the midnight point.
- The results show the delay of the mid-latitude GTID compared to the equatorial one and that in the auroral ovals.
- An interesting result is the negative response in mid latitudes caused by the spread of warmed air from the polar oval to low latitudes.
- The observed symmetric ionospheric response at 40°S and 40°N is explained by the extension of the Equatorial Ionospheric Anomaly.
- According to the selected geomagnetic storm, the maximum negative response in the magnetic equator region is observed at local time close to midnight. This type of response persists all the time in the night hemisphere.
- A comparison is presented between the global distribution of the ionospheric response and the CAJ2M ionospheric station data. The obtained differences in the negative and positive responses in the two types of data are explained by the presence of not only vertical but also horizontal drift.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Perreault, P.; Akasofu, S.I. A study of geomagnetic storms. Geophys. J. Int. 1978, 54, 547–573. [Google Scholar] [CrossRef]
- Danilov, A.D.; Lastovicka, J. Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2001, 2, 209–224. [Google Scholar]
- KouckáKnížová, P.; Potužníková, K.; Podolská, K.; Hannawald, P.; Mošna, Z.; Kouba, D.; Chum, J.; Wüst, S.; Bittner, M.; Kerum, J. Multi-instrumental observation of mesoscale tropospheric systems in July 2021 with a potential impact on ionospheric variability in midlatitudes. Front. Astron. Space Sci. 2023, 10, 1197157. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Ning, B.; Wang, M. Large-scale traveling ionospheric disturbances observed by GPS total electron content during the magnetic storm of 29–30 October 2003. J. Geophys. Res. Space Phys. 2007, 112, A06309. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Liu, L.; Afraimovich, E.L.; Voeykov, S.V.; Perevalova, N.P. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J. Geophys. Res. Space Phys. 2008, 113, A00A01. [Google Scholar] [CrossRef]
- Mosna, Z.; Kouba, D.; Knizova, P.K.; Buresova, D.; Chum, J.; Sindelarova, T.; Urbar, J.; Boska, J.; Saxonbergova–Jankovicova, D. Ionospheric storm of September 2017 observed at ionospheric station Pruhonice, the Czech Republic. Adv. Space. Res. 2020, 65, 115–128. [Google Scholar] [CrossRef]
- Hartz, T.R.; Brice, N.M. The general pattern of auroral particle precipitation. Planet. Space Sci. 1967, 15, 301–329. [Google Scholar] [CrossRef]
- Frank, L.A.; Ackerson, K.L. Observations of charged particle precipitation into the auroral zone. J. Geophys. Res. 1971, 76, 3612–3643. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. Space Phys. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Abdu, M.A.; De Souza, J.R.; Sobral, J.H.A.; Batista, I.S. Magnetic storm associated disturbance dynamo effects in the low and equatorial latitude ionosphere. In Recurrent Magnetic Storms: Corotating Solar Wind Streams Geophysical Monograph Series, 1st ed.; Tsurutani, B., McPherron, R., Lu, G., Sobral, J.H.A., Gopalswamy, N., Eds.; AGU: Washington, DC, USA, 2006; Volume 167, pp. 283–304. [Google Scholar]
- Maruyama, N.; Richmond, A.D.; Fuller-Rowell, T.J.; Codrescu, M.V.; Sazykin, S.; Toffoletto, F.R.; Spiro, R.W.; Millward, G.H. Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 2005, 32, L17105. [Google Scholar] [CrossRef]
- Huang, C.M. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. Space Phys. 2013, 118, 496–501. [Google Scholar] [CrossRef]
- Scherliess, L.; Fejer, B.G. Storm time dependence of equatorial disturbance dynamo zonal electric fields. J. Geophys. Res. Space Phys. 1997, 102, 24037–24046. [Google Scholar] [CrossRef]
- Fejer, B.G.; Jensen, J.W.; Su, S.-Y. Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett. 2008, 35, L20106. [Google Scholar] [CrossRef]
- Balan, N.; Souza, J.; Bailey, G.J. Recent developments in the understanding of equatorial ionization anomaly: A review. J. Atmos. Sol.-Terr. Phys. 2018, 171, 3–11. [Google Scholar] [CrossRef]
- Eastes, R.W.; Solomon, S.C.; Daniell, R.E.; Anderson, D.N.; Burns, A.G.; England, S.L.; Martinis, C.R.; McClintock, W.E. Global-scale observations of the equatorial ionization anomaly. Geophys. Res. Lett. 2019, 46, 9318–9326. [Google Scholar] [CrossRef]
- Abdu, M.A. Equatorial ionosphere–thermosphere system: Electrodynamics and irregularities. Adv. Space. Res. 2005, 35, 771–787. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J. Equatorial plasma fountain and its effects: Possibility of an additional layer. J. Geophys. Res. Space Phys. 1995, 100, 21421–21432. [Google Scholar] [CrossRef]
- Balan, N.; Liu, L.; Le, H. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2018, 2, 257–275. [Google Scholar] [CrossRef]
- Balan, N.; Shiokawa, K.; Otsuka, Y.; Watanabe, S.; Bailey, G.J. Super plasma fountain and equatorial ionization anomaly during penetration electric field. J. Geophys. Res. Space Phys. 2009, 114, A03310. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V. Disturbance dynamo, prompt penetration electric field and overshielding in the Earth’s ionosphere during geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 2012, 90, 146–155. [Google Scholar] [CrossRef]
- Karan, D.K.; Martinis, C.R.; Daniell, R.E.; Eastes, R.W.; Wang, W.; McClintock, W.E.; Michell, R.G.; England, S. GOLD observations of the merging of the Southern Crest of the equatorial ionization anomaly and aurora during the 10 and 11 May 2024 Mother’s Day super geomagnetic storm. Geophys. Res. Lett. 2024, 51, e2024GL110632. [Google Scholar] [CrossRef]
- Mazaudier, C.; Venkateswaran, S.V. Delayed ionospheric effects of March 22, 1979 studied by the sixth Coordinated Data Analysis Workshop (CDAW-6). Ann. Geophys. 1988, 8, 1–8. [Google Scholar]
- Gold, T. Magnetic storms. Space Sci. Rev. 1962, 1, 100–114. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Kamide, Y. Magnetic storms. Surv. Geophys. 1997, 18, 363–383. [Google Scholar] [CrossRef]
- Loewe, C.A.; Prölss, G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. Space Phys. 1997, 102, 14209–14213. [Google Scholar] [CrossRef]
- Lopez, R.E.; Wiltberger, M.; Hernandez, S.; Lyon, J.G. Solar wind density control of energy transfer to the magnetosphere. Geophys. Res. Lett. 2004, 31, L08804. [Google Scholar] [CrossRef]
- Kojima, M.; Kakinuma, T. Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 1990, 53, 173–222. [Google Scholar] [CrossRef]
- Zhang, J.; Richardson, I.G.; Webb, D.F.; Gopalswamy, N.; Huttunen, E.; Kasper, J.C.; Nitta, N.V.; Poomvises, W.; Thompson, B.J.; Wu, C.C.; et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005. J. Geophys. Res. Space Phys. 2007, 112, A10102. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Echer, E.; Clua-Gonzalez, A.L.; Tsurutani, B.T. Interplanetary origin of intense geomagnetic storms (Dst < −100 nT) during solar cycle 23. Geophys. Res. Lett. 2007, 34, L06101. [Google Scholar] [CrossRef]
- Menvielle, M.; Berthelier, A. The K-derived planetary indices: Description and availability. Rev. Geophys. 1991, 29, 415–432. [Google Scholar] [CrossRef]
- Rawer, K. Encyclopedia of Physics. In Geophysics III, 1st ed.; Rawer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Part VII; pp. 389–391. [Google Scholar]
- Rawer, K.; Kouris, S.S.; Fotiadis, D.N. Variability of F2 parameters depending on modip. Adv. Space. Res. 2003, 31, 537–541. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Pancheva, D.; Andonov, B.; Pashova, L. Global TEC maps based on GNSS data: 1. Empirical background TEC model. J. Geophys. Res. Space Phys. 2013, 118, 4594–4608. [Google Scholar] [CrossRef]
- Bojilova, R.; Mukhtarov, P. Seasonal Features of the Ionospheric Total Electron Content Response at Low Latitudes during Three Selected Geomagnetic Storms. Atmosphere 2024, 15, 278. [Google Scholar] [CrossRef]
- Rostoker, G. Geomagnetic indices. Rev. Geophys. 1972, 10, 935–950. [Google Scholar] [CrossRef]
- Description of the Geomagnetic Storm Class According to the Kp-Index Defined by NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA)-Space Weather Prediction Center. Available online: https://www.spaceweather.gov/noaa-scales-explanation (accessed on 20 October 2024).
- Guarnieri, F.L.; Tsurutani, B.T.; Gonzalez, W.D.; Echer, E.; Gonzalez, A.L.; Grande, M.; Soraas, F. ICME and CIR storms with particular emphasis on HILDCAA events. In Proceedings of the ILWS Workshop, Goa, India, 19–20 February 2006; pp. 19–20. [Google Scholar]
- Gonzalez, W.D.; Tsurutani, B.T.; Clúa de Gonzalez, A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, 88, 529–562. [Google Scholar] [CrossRef]
- Chapman, S.; Ferraro, V.C.A. The theory of the first phase of a geomagnetic storm. Terr. Magn. Atmos. Electr. 1940, 45, 245–268. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Shprits, Y.Y. Is the Dst index sufficient to define all Geospace storms? J. Geophys. Res. Space Phys. 2017, 122, 11543–11547. [Google Scholar] [CrossRef]
- Daglis, I.A.; Thorne, R.M.; Baumjohann, W.; Orsini, S. The terrestrial ring current: Origin, formation, and decay. Rev. Geophys. 1999, 37, 407–438. [Google Scholar] [CrossRef]
- Longden, N.; Denton, M.H.; Honary, F. Particle precipitation during ICME-driven and CIR-driven geomagnetic storms. J. Geophys. Res. Space Phys. 2008, 113, A06205. [Google Scholar] [CrossRef]
- Zhang, S.R.; Coster, A.J.; Erickson, P.J.; Goncharenko, L.P.; Rideout, W.; Vierinen, J. Traveling ionospheric disturbances and ionospheric perturbations associated with solar flares in September 2017. J. Geophys. Res. Space Phys. 2019, 124, 5894–5917. [Google Scholar] [CrossRef]
- Huang, C.-S. Effects of geomagnetic storms on the postsunset vertical plasma drift in the equatorial ionosphere. J. Geophys. Res. Space Phys. 2018, 123, 4181–4191. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Pancheva, D. Thermosphere–ionosphere coupling in response to recurrent geomagnetic activity. J. Atmos. Sol.-Terr. Phys. 2012, 90, 132–145. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojilova, R.; Mukhtarov, P.; Pancheva, D. Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024. Remote Sens. 2024, 16, 4046. https://doi.org/10.3390/rs16214046
Bojilova R, Mukhtarov P, Pancheva D. Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024. Remote Sensing. 2024; 16(21):4046. https://doi.org/10.3390/rs16214046
Chicago/Turabian StyleBojilova, Rumiana, Plamen Mukhtarov, and Dora Pancheva. 2024. "Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024" Remote Sensing 16, no. 21: 4046. https://doi.org/10.3390/rs16214046
APA StyleBojilova, R., Mukhtarov, P., & Pancheva, D. (2024). Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024. Remote Sensing, 16(21), 4046. https://doi.org/10.3390/rs16214046