A Cropland Disturbance Monitoring Method Based on Probabilistic Trajectories
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Basic Datasets
3. Methods
- Applying the optimal pixel synthesis method and constructing cloud-free and shadow-free Landsat SR synthetic images from 1990 to 2021;
- Fusing multi-source land cover data products and automatically acquiring the training samples;
- Generating year-by-year probabilistic maps of croplands using a random forest classification method on Landsat SR imagery from to 1990–2021;
- Using the LandTrendr algorithm to segment the cropland probabilities to map the cropland disturbances annually;
- Calculate the confusion matrix based on the validation samples and assess the accuracy of the maps in conjunction with the evaluation metrics.
3.1. Data Preprocessing
3.2. Training Samples Generation
3.3. Cropland Probability Estimation
3.4. LandTrendr Temporal Segmentation
3.5. Accuracy Evaluation
4. Results
4.1. Spatiotemporal Patterns of Cropland Disturbance
4.2. Accuracy Evaluation of Cropland Disturbance Maps
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saxena, R.; Watson, L.T.; Wynne, R.H.; Brooks, E.B.; Thomas, V.A.; Zhiqiang, Y.; Kennedy, R.E. Towards a polyalgorithm for land use change detection. ISPRS J. Photogramm. Remote Sens. 2018, 144, 217–234. [Google Scholar] [CrossRef]
- Liu, F. Research on Land Use Change Detection Methods Based on Single-Phase Remote Sensing Images and GIS; Chinese Academy of Surveying and Mapping: Beijing, China, 2006. [Google Scholar]
- Xu, Z.; Guan, Y.; Wang, S. Detection of Cultivated Land Change by Integrating Object Image Analysis and OCNN. Remote Sens. Inf. 2022, 37, 15–22. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef]
- Fan, X.; Qu, Y.; Zhang, J.; Bai, E. China’s vegetation restoration programs accelerated vegetation greening on the Loess Plateau. Agric. For. Meteorol. 2024, 350, 109994. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Si, L.; Yuan, K.; Tian, Y. A New System for Forest Resources Survey Based on Information Technology. J. Beijing For. Univ. 2002, 24, 147–155. [Google Scholar]
- Wessels, K.J.; Van den Bergh, F.; Roy, D.P.; Salmon, B.P.; Steenkamp, K.C.; MacAlister, B.; Swanepoel, D.; Jewitt, D. Rapid land cover map updates using change detection and robust random forest classifiers. Remote Sens. 2016, 8, 888. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr- Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr algorithm on google earth engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef]
- Li, W. Remote Sensing Monitoring of Temporal and Spatial Changes of Loess Terraces in Guyuan Based on GEE and Machine Learning; Ningxia University: Yinchuan, China, 2022. [Google Scholar]
- Grădinaru, S.R.; Kienast, F.; Psomas, A. Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecol. Indic. 2019, 96, 79–86. [Google Scholar] [CrossRef]
- Zhang, M.X.; Li, G.Y.; He, T.T.; Zhai, G.; Guo, A.D.; Chen, H.; Wu, C.F. Reveal the severe spatial and temporal patterns of abandoned cropland in China over the past 30 years. Sci. Total Environ. 2023, 857, 159591. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, J.; Chen, J. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, S. Automatic Extraction of Land Cover Samples from Multi-Source Data. J. Remote Sens. 2017, 21, 757–766. [Google Scholar]
- Zhang, C.; Dong, J.; Xie, Y.; Zhang, X.; Ge, Q. Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102888. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L. Changes of inland lake area in arid Central Asia during 1975–2007: A remote-sensing analysis. J. Lake Sci. 2011, 23, 80–88. [Google Scholar]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, J.G.; Lawler, J.T. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Kennedy, R.E.; Sulla-Menashe, D.; Hostert, P. Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3421–3427. [Google Scholar] [CrossRef]
- Yan, X.; Wang, J. The Forest Change Footprint of the Upper Indus Valley, from 1990 to 2020. Remote Sens. 2022, 14, 744. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Broich, M.; Hansen, M.C.; Potapov, P.; Adusei, B.; Lindquist, E.; Stehman, S.V. Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 277–291. [Google Scholar] [CrossRef]
- Colditz, R.R.; Schmidt, M.; Conrad, C.; Hansen, M.C.; Dech, S. Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions. Remote Sens. Environ. 2011, 115, 3264–3275. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Graesser, J.; Ramankutty, N. Detection of cropland field parcels from Landsat imagery. Remote Sens. Environ. 2017, 201, 165–180. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Mueller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef]
- Rey Benayas, J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 14. [Google Scholar] [CrossRef]
- Yan, D.R.; Le, L. Forest carbon storage and its regional change feature in Inner Mongolia. J. Inn. Mong. For. Sci. Technol. 2010, 36, 19–22. [Google Scholar]
- Zhang, W.X.; Wang, J.L. Flood monitoring of Heilongjiang River basin in China and Russia transboundary region based on SAR backscattering characteristics. J. Geo-Inf. Sci. 2022, 24, 802–813. [Google Scholar] [CrossRef]
- Kerckhof, A.; Spalevic, V.; Van Eetvelde, V.; Nyssen, J. Factors of land abandonment in mountainous Mediterranean areas: The case of Montenegrin settlements. Springerplus 2016, 5, 485. [Google Scholar] [CrossRef]
- Gellrich, M.; Zimmermann, N.E. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: Aspatial statistical modelling approach. Landsc. Urban Plan. 2007, 79, 65–76. [Google Scholar] [CrossRef]
- Witmer, F.D.W. Detecting war-induced abandoned agricultural land in northeast Bosnia using multispectral, multitemporal Landsat TM imagery. Int. J. Remote Sens. 2008, 29, 3805–3831. [Google Scholar] [CrossRef]
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T.H. A fusion approach to forest disturbance mapping using time series ensemble techniques. Remote Sens. Environ. 2019, 221, 188–197. [Google Scholar] [CrossRef]
Date | Year(s) | Temporal Resolution | Spatial Resolution | Data Sources |
---|---|---|---|---|
Landsat5-SR | 1990–2012 | 16 d | 30 m | http://landsat.usgs.gov/ (Accessed on 28 March 2024) |
Landsat7-SR | 1999–2021 | 16 d | 30 m | http://landsat.usgs.gov/ (Accessed on 28 March 2024) |
Landsat8-SR | 2013–2021 | 16 d | 30 m | http://landsat.usgs.gov/ (Accessed on 28 March 2024) |
SRTM3 | 2000 | - | 30 m | http://www2.jpl.nasa.gov/srtm (Accessed on 28 March 2024) |
GlobeLand30 | 2000, 2010, and 2020 | - | 30 m | http://www.globeland30.com (Accessed on 28 March 2024) |
FROM-GLC | 2015 | - | 30 m | http://data.ess.tsinghua.edu.cn /data/Simulation/ (Accessed on 28 March 2024) |
GLC-FCS | 1990 and 2015 | - | 30 m | https://zenodo.org/records/8239305 (Accessed on 28 March 2024) |
Parameters | Type | This Work | Definition |
---|---|---|---|
Max Segments | Integer | 8 | Maximum number of segments to be used for time-series fitting |
Spike Threshold | Float | 0.9 | Threshold for curbing peaks (1.0 means no curbing) |
Vertex Count Overshoot | Integer | 3 | If the number of vertices in the initial model exceeds maxSegments + 1, change it to maxSegments + 1. |
Prevent One Year Recovery | Boolean | true | Avoiding the appearance of segments representing one year of recovery |
Recovery Threshold | Float | 0.25 | Eliminate segments with an annual recovery rate greater than 1 |
Pval Threshold | Float | 0.05 | If the p-value of the fitted model surpasses this threshold, the current model is rejected and another model is fitted using the optimizer |
Best Model Proportion | Float | 0.75 | Take the model with the largest number of vertices if the p value of the model differs from the model with the smallest p value by up to this proportion |
Min Observations Needed | Integer | 6 | Minimum number of observations to conduct the output fitting |
Year | Area (km2) | Proportion |
---|---|---|
1991 | 1431.48 | 50.84% |
1992 | 1.49 | 0.05% |
1993 | 8.17 | 0.29% |
1994 | 17.14 | 0.61% |
1995 | 59.88 | 2.13% |
1996 | 32.72 | 1.16% |
1997 | 24.91 | 0.88% |
1998 | 51.48 | 1.83% |
1999 | 74.17 | 2.63% |
2000 | 31.99 | 1.14% |
2001 | 38.87 | 1.38% |
2002 | 85.51 | 3.04% |
2003 | 70.37 | 2.50% |
2004 | 96.71 | 3.43% |
2005 | 12.82 | 0.46% |
2006 | 20.72 | 0.74% |
2007 | 23.17 | 0.82% |
2008 | 8.28 | 0.29% |
2009 | 23.14 | 0.82% |
2010 | 17.21 | 0.61% |
2011 | 8.14 | 0.29% |
2012 | 32.37 | 1.15% |
2013 | 70.99 | 2.52% |
2014 | 32.19 | 1.14% |
2015 | 40.89 | 1.45% |
2016 | 71.76 | 2.55% |
2017 | 225.66 | 8.01% |
2018 | 24.57 | 0.87% |
2019 | 25.78 | 0.92% |
2020 | 77.21 | 2.74% |
2021 | 75.71 | 2.69% |
Total | 2815.52 | 100% |
Disturbance | No Disturbance | Total | User Accuracy | |
---|---|---|---|---|
Disturbance | 85 | 15 | 100 | 85% |
No Disturbance | 3 | 97 | 100 | 97% |
Total | 88 | 112 | 200 | |
Producer Accuracy | 96.59% | 86.61% | ||
Overall Accuracy | 91% | |||
Kappa Coefficient | 0.82 | |||
F1 Scores | 0.90 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Wang, J.; Yang, K.; Fetisov, D.; Li, K.; Liu, M.; Zou, W. A Cropland Disturbance Monitoring Method Based on Probabilistic Trajectories. Remote Sens. 2024, 16, 4048. https://doi.org/10.3390/rs16214048
Jiang J, Wang J, Yang K, Fetisov D, Li K, Liu M, Zou W. A Cropland Disturbance Monitoring Method Based on Probabilistic Trajectories. Remote Sensing. 2024; 16(21):4048. https://doi.org/10.3390/rs16214048
Chicago/Turabian StyleJiang, Jiawei, Juanle Wang, Keming Yang, Denis Fetisov, Kai Li, Meng Liu, and Weihao Zou. 2024. "A Cropland Disturbance Monitoring Method Based on Probabilistic Trajectories" Remote Sensing 16, no. 21: 4048. https://doi.org/10.3390/rs16214048
APA StyleJiang, J., Wang, J., Yang, K., Fetisov, D., Li, K., Liu, M., & Zou, W. (2024). A Cropland Disturbance Monitoring Method Based on Probabilistic Trajectories. Remote Sensing, 16(21), 4048. https://doi.org/10.3390/rs16214048