Intelligent Monitoring Applications of Landslide Disaster Knowledge Graphs Based on ChatGLM2
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Source
2.3. Landslide Monitor Model
2.3.1. Ontology Construction
2.3.2. Entity and Relationship Extraction Based on ChatGLM2
2.3.3. Deformation Monitoring Based on D-InSAR
3. Results
3.1. Entity and Relationship Extraction Result
3.1.1. Landslide Incident Entities
3.1.2. Geological Environment and Economic Activities Entities
3.1.3. Remote Sensing Disaster Monitoring and Image Processing Entities
3.2. Deformation Monitoring Results
4. Discussion
4.1. Analysis of the Formation and Regional Impact of Coseismic Landslides
4.2. Analysis of Landslide Monitoring Optimization Through Knowledge Graph
4.3. Research Contributions and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
References
- Kim, T.-H.; Youn, J. A Study on the System Improvement for Efficient Management of Large-Scale Complex Disaster. Korea Acad. -Ind. Coop. Soc. 2018, 19, 176–183. [Google Scholar] [CrossRef]
- Coronese, M.; Lamperti, F.; Keller, K.; Chiaromonte, F.; Roventini, A. Evidence for Sharp Increase in the Economic Damages of Extreme Natural Disasters. Proc. Natl. Acad. Sci. USA 2019, 116, 21450–21455. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; Albert, J.; Hepburn, C. Contributors to the Frequency of Intense Climate Disasters in Asia-Pacific Countries. Clim. Chang. 2014, 126, 381–398. [Google Scholar] [CrossRef]
- Jones, P.; Mann, M. Climate over Past Millennia. Rev. Geophys. 2004, 42, 2. [Google Scholar] [CrossRef]
- Tyagi, S.; Garg, N.; Paudel, R. Environmental Degradation: Causes and Consequences. Evropejskij Issledovatelʹ 2014, 81, 1491–1498. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Singh, J. Environmental Degradation Causes and Remediation Strategies. In Environmental Degradation: Causes and Remediation Strategies; Agriculture and Environmental Science Academy: Haridwar, India, 2020. [Google Scholar] [CrossRef]
- Ferreira, C.; Walsh, R.; Ferreira, A. Degradation in Urban Areas. Curr. Opin. Environ. Sci. Health 2018, 5, 19–25. [Google Scholar] [CrossRef]
- Li, J.-Z.; Li, S.; Wang, W.; Rao, L.; Liu, H. Are People Always More Risk Averse after Disasters? Surveys after a Heavy Snow-Hit and a Major Earthquake in China in 2008. Appl. Cogn. Psychol. 2011, 25, 104–111. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Sun, P. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Zhang, X.; Sheng, W.; Qi, S. Hazards and Reflection on Fangshan District Extreme Rainstorm of July 21, 2012, the Urban Mountainous Region of Beijing, North China. Nat. Hazards 2018, 94, 1459–1461. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Alexander, D. Disaster and Emergency Planning for Preparedness, Response, and Recovery. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Y. Spatial and Temporal Analysis of a Fatal Landslide Inventory in China from 1950 to 2016. Landslides 2018, 15, 2357–2372. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide Risk Assessment and Management: An Overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Li, T. Landslide Hazards and Their Mitigation in China; Science Press: Beijing, China, 1992. [Google Scholar]
- Bragagnolo, L.; Silva, R.M.D.; Grzybowski, J. Landslide Susceptibility Mapping with r.Landslide: A Free Open-Source GIS-Integrated Tool Based on Artificial Neural Networks. Environ. Model. Softw. 2020, 123, 104565. [Google Scholar] [CrossRef]
- Venkatesan, M.; Prabhavathy, P. Big Data Computation Model for Landslide Risk Analysis Using Remote Sensing Data. In Big Data Analytics for Satellite Image Processing and Remote Sensing; IGI Global: Hershey, PA, USA, 2018; pp. 22–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Zhu, Q.; Xie, Y.; Li, W.; Fu, L.; Zhang, J.; Tan, J. The Construction of Personalized Virtual Landslide Disaster Environments Based on Knowledge Graphs and Deep Neural Networks. Int. J. Digit. Earth 2020, 13, 1637–1655. [Google Scholar] [CrossRef]
- Piletski, I.I.; Batura, M.; Shylin, L.Y. Graph Technologies in an Intelligent System of Complex Analysis of Data from Internet Sources. Dokl. BGUIR 2020, 18, 89–97. [Google Scholar] [CrossRef]
- Tran, H.N.; Takasu, A. Analyzing Knowledge Graph Embedding Methods from a Multi-Embedding Interaction Perspective. arXiv 2019, arXiv:1903.11406. [Google Scholar]
- Jie, L.; Feng, Z.; Zhang, M.; Jing, F.; Guo, Q. Review of Knowledge Graph and Its Vertical Applications in Industry. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 5151–5157. [Google Scholar] [CrossRef]
- Qingjie, L.; Lingyu, X.; Jie, Y.; Lei, W.; Yunlan, X.; Sui-xiang, S.; Yang, L. Research on Domain Knowledge Graph Based on the Large Scale Online Knowledge Fragment. In Proceedings of the 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA), Ottawa, ON, Canada, 29–30 September 2014; pp. 312–315. [Google Scholar] [CrossRef]
- Wang, C.; Yu, H.; Wan, F. Information Retrieval Technology Based on Knowledge Graph. In Proceedings of the 2018 3rd International Conference on Advances in Materials, Mechatronics and Civil Engineering, Hangzhou, China, 13–15 April 2018; pp. 291–296. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, Y. Research on Knowledge Retrieval by Leveraging Data Mining Techniques. In Proceedings of the 2010 International Conference on Future Information Technology and Management Engineering, Changzhou, China, 9–10 October 2010; Volume 1, pp. 479–484. [Google Scholar] [CrossRef]
- Wang, N.; Haihong, E.; Song, M.; Wang, Y. Construction Method of Domain Knowledge Graph Based on Big Data-Driven. In Proceedings of the 2019 5th International Conference on Information Management (ICIM), Cambridge, UK, 24–27 March 2019; pp. 165–172. [Google Scholar] [CrossRef]
- Purohit, H.; Kanagasabai, R.; Deshpande, N. Towards Next Generation Knowledge Graphs for Disaster Management. In Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing (ICSC), Newport Beach, CA, USA, 30 January–1 February 2019; IEEE: Newport Beach, CA, USA, 2019; pp. 474–477. [Google Scholar]
- Pekar, V.; Binner, J.; Najafi, H.; Hale, C.; Schmidt, V.A. Early Detection of Heterogeneous Disaster Events Using Social Media. J. Assoc. Inf. Sci. Technol. 2020, 71, 43–54. [Google Scholar] [CrossRef]
- Hristidis, V.; Chen, S.-C.; Li, T.; Luis, S.; Deng, Y. Survey of Data Management and Analysis in Disaster Situations. J. Syst. Softw. 2010, 83, 1701–1714. [Google Scholar] [CrossRef]
- Bizid, I.; Faïz, S.; Boursier, P.; Yusuf, J.C.M. Integration of Heterogeneous Spatial Databases for Disaster Management. In Advances in Conceptual Modeling. ER 2013; Springer: Cham, Switzerland, 2013; pp. 77–86. [Google Scholar] [CrossRef]
- Rahman, A. Knowledge Representation: A Semantic Network Approach. In Handbook of Research on Computational Intelligence Applications in Bioinformatics 2016; IGI Global: Hershey, PA, USA, 2016; pp. 55–74. [Google Scholar] [CrossRef]
- Allen, C.; Balazevic, I.; Hospedales, T.M. On Understanding Knowledge Graph Representation. arXiv 2019, arXiv:1909.11611. [Google Scholar]
- Chen, Z.; Wang, Y.; Zhao, B.; Cheng, J.; Zhao, X.; Duan, Z. Knowledge Graph Completion: A Review. IEEE Access 2020, 8, 192435–192456. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Mao, D.; Cai, Q. A Relationship Extraction Method for Domain Knowledge Graph Construction. World Wide Web 2020, 23, 735–753. [Google Scholar] [CrossRef]
- Mukherjee, M.; Hellendoorn, V. Stack Over-Flowing with Results: The Case for Domain-Specific Pre-Training over One-Size-Fits-All Models. arXiv 2023, arXiv:2306.03268. [Google Scholar] [CrossRef]
- FAISAL, F.; Anastasopoulos, A. Phylogeny-Inspired Adaptation of Multilingual Models to New Languages. arXiv 2022, arXiv:2205.09634. pp. 434–452. [Google Scholar] [CrossRef]
- Gili, J.; Corominas, J.; Rius, J. Using Global Positioning System Techniques in Landslide Monitoring. Eng. Geol. 2000, 55, 167–192. [Google Scholar] [CrossRef]
- Rajapakse, R. 19—Geotechnical Instrumentation. In Geotechnical Engineering Calculations and Rules of Thumb; Elsevier: Amsterdam, The Netherlands, 2008; pp. 269–272. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q. Three-Dimensional Information Extraction from GaoFen-1 Satellite Images for Landslide Monitoring. Geomorphology 2018, 309, 77–85. [Google Scholar] [CrossRef]
- Bellotti, F.; Bianchi, M.; Colombo, D.; Ferretti, A.; Tamburini, A. Advanced InSAR Techniques to Support Landslide Monitoring. In Mathematics of Planet Earth: Proceedings of the 15th Annual Conference of the International Association for Mathematical Geosciences, Madrid, Spain, 2–6 September 2013; Springer: Berlin/Heidelberg, Germany, 2014; pp. 287–290. [Google Scholar] [CrossRef]
- Aydin, A.; Akyol, E.; Güngör, M.; Kaya, A.; Tașdelen, S. Geophysical Surveys in Engineering Geology Investigations with Field Examples. In Handbook of Research on Trends and Digital Advances in Engineering Geology; IGI Global: Hershey, PA, USA, 2018; pp. 257–280. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhao, D.; Ding, Y.; Liu, Y.; Xu, Q.; Qiu, Y.; Liu, C.; Liu, Z.; Zha, Z.; Li, R. Performance Evaluation for Four GIS-Based Models Purposed to Predict and Map Landslide Susceptibility: A Case Study at a World Heritage Site in Southwest China. CATENA 2019, 183, 104221. [Google Scholar] [CrossRef]
- Song, K.-Y.; Oh, H.; Choi, J.; Park, I.; Lee, C.-W.; Lee, S. Prediction of Landslides Using ASTER Imagery and Data Mining Models. Adv. Space Res. 2012, 49, 978–993. [Google Scholar] [CrossRef]
- Rompaey, A.; Govers, G. Data Quality and Model Complexity for Regional Scale Soil Erosion Prediction. Int. J. Geogr. Inf. Sci. 2002, 16, 663–680. [Google Scholar] [CrossRef]
- Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-Oriented Change Detection for Landslide Rapid Mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 701–705. [Google Scholar] [CrossRef]
- Song, Y.; Dai, D.; Hu, C.; Gui, M.; Zan, H.; Zhang, K. Research on Partition Block-Based Multi-Source Knowledge Fusion for Knowledge Graph Construction. In Proceedings of the 2022 International Conference on Asian Language Processing (IALP), Singapore, 27–28 October 2022; pp. 458–463. [Google Scholar] [CrossRef]
- Zou, Y.; Qiu, D. Combining Tensor Decomposition and Word Embedding for Asymmetrical Relationship Prediction in Knowledge Graphs. In Proceedings of the 2020 13th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 12–13 December 2020; pp. 87–90. [Google Scholar] [CrossRef]
- Du, Z.; Qian, Y.; Liu, X.; Ding, M.; Qiu, J.; Yang, Z.; Tang, J. GLM: General Language Model Pretraining with Autoregressive Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Long papers. Volume 1, pp. 320–335. [Google Scholar]
- Liu, X.; Ji, K.; Fu, Y.; Tam, W.L.; Du, Z.; Yang, Z.; Tang, J. P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-Tuning Universally Across Scales and Tasks. arXiv 2022, arXiv:2110.07602. [Google Scholar]
- Liu, X.; Zheng, Y.; Du, Z.; Ding, M.; Qian, Y.; Yang, Z.; Tang, J. GPT Understands, Too. arXiv 2023, arXiv:2103.10385. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef]
- Luo, R.; Xu, J.; Zhang, Y.; Ren, X.; Sun, X. PKUSEG: A Toolkit for Multi-Domain Chinese Word Segmentation. arXiv 2019, arXiv:1906.11455. [Google Scholar]
- Institute of Geophysics, C.E.A. Technical Support Brief on the 6.2 Magnitude Earthquake in Jishishan County, Linxia Prefecture, Gansu on 18 December, 2023. Available online: https://www.cea-igp.ac.cn/kydt/280418.html (accessed on 22 October 2024).
- Xu, B.; Zhang, C.; Liu, W.; Huang, J.; Su, Y.; Yang, Y.; Jiang, W.; Sun, W. Landslide Identification Method Based on the FKGRNet Model for Remote Sensing Images. Remote Sens. 2023, 15, 3407. [Google Scholar] [CrossRef]
- Bo, J.; Yang, Y.; Xiao, H.; Mai, Z. Research on Landslide Spatial Prediction Method Based on Knowledge Graph. In Proceedings of the Third International Conference on Advanced Algorithms and Signal Image Processing (AASIP 2023), Kuala Lumpur, Malaysia, 30 June–2 July 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12799, pp. 511–519. [Google Scholar]
- Wang, P.; Deng, X.; Liu, Y.; Guo, L.; Zhu, J.; Fu, L.; Xie, Y.; Li, W.; Lai, J. A Knowledge Discovery Method for Landslide Monitoring Based on K-Core Decomposition and the Louvain Algorithm. ISPRS Int. J. Geo Inf. 2021, 11, 217. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, L.; Seshadri, S.; Chiu, L. Analyzing Enterprise Storage Workloads with Graph Modeling and Clustering. IEEE J. Sel. Areas Commun. 2016, 34, 551–574. [Google Scholar] [CrossRef]
- Purohit, S.; Van, N.; Chin, G. Semantic Property Graph for Scalable Knowledge Graph Analytics. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 2672–2677. [Google Scholar] [CrossRef]
- Pomp, A.; Lipp, J.; Meisen, T. You Are Missing a Concept! Enhancing Ontology-Based Data Access with Evolving Ontologies. In Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing (ICSC), Newport Beach, CA, USA, 30 January–1 February 2019; pp. 98–105. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Mao, D.; Cai, Q. A Domain Knowledge Graph Construction Method Based on Wikipedia. J. Inf. Sci. 2020, 47, 783–793. [Google Scholar] [CrossRef]
Source | Number of Entries (Posts, Articles) | Number of Characters |
---|---|---|
Literature | 39 | 1,159,985 |
Public reporting | 886 | 257,918 |
Data Name | Data ID | Tile Number | Acquisition Time | Spatial Resolution (m) | Data Source | |
---|---|---|---|---|---|---|
Path | Frame | |||||
Sentinel-1 | 135 | 473 | -- | 14 December 2023 | 5 × 20 | https://dat·aspace.copernicus.eu, accessed on 25 August 2024 |
Sentinel-1 | 135 | 473 | -- | 26 December 2023 | 5 × 20 | |
Sentinel-2 | -- | -- | T48SUE | 20 December 2023 | 10 | |
Sentinel-2 | -- | -- | T48STE | 8 December 2023 | 10 |
Radar Band | Baseline Parameters | Coherence Threshold | Multi-Looking Factor | Phase Unwrapping Algorithm | Orbit Differential |
---|---|---|---|---|---|
C-band (Sentinel-1) | 7 days | 0.5 | 5 | Goldstein Algorithm | Yes |
Total Number of Entities and Attributes | Number of Landslide Entities | Number of Geological Environment and Economic Activities Entities | Number of Remote Sensing Disaster Monitoring and Image Processing Entities | Number of External Operations Involved | Number of Calculation Routes |
---|---|---|---|---|---|
106 | 17 | 12 | 31 | 17 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Yang, H.; Cai, Y.; Yu, B.; Liang, C.; Duan, Z.; Liang, Q. Intelligent Monitoring Applications of Landslide Disaster Knowledge Graphs Based on ChatGLM2. Remote Sens. 2024, 16, 4056. https://doi.org/10.3390/rs16214056
Wu Z, Yang H, Cai Y, Yu B, Liang C, Duan Z, Liang Q. Intelligent Monitoring Applications of Landslide Disaster Knowledge Graphs Based on ChatGLM2. Remote Sensing. 2024; 16(21):4056. https://doi.org/10.3390/rs16214056
Chicago/Turabian StyleWu, Zhengrong, Haibo Yang, Yingchun Cai, Bo Yu, Chuangheng Liang, Zheng Duan, and Qiuhua Liang. 2024. "Intelligent Monitoring Applications of Landslide Disaster Knowledge Graphs Based on ChatGLM2" Remote Sensing 16, no. 21: 4056. https://doi.org/10.3390/rs16214056
APA StyleWu, Z., Yang, H., Cai, Y., Yu, B., Liang, C., Duan, Z., & Liang, Q. (2024). Intelligent Monitoring Applications of Landslide Disaster Knowledge Graphs Based on ChatGLM2. Remote Sensing, 16(21), 4056. https://doi.org/10.3390/rs16214056