Description and In-Flight Assessment of the POSEIDON-3C Altimeter of the SWOT Mission
Abstract
:1. Introduction
2. POSEIDON-3C Altimeter Description
2.1. Altimeter Principle and Performance
2.1.1. The Full Deramp Technique
- The range window (or observation window) is limited by the number of FFT samples.
- The range gate (frequency step of the FFT) is defined by the pulse duration.
2.1.2. Propagation Biases Resolution
2.1.3. Performance Requirement and Improvement with Respect to POSEIDON-3B
2.2. POSEIDON-3C Architecture
2.2.1. Processing and Control Unit (PCU)
2.2.2. Radio Frequency Unit (RFU)
2.2.3. Antenna
2.3. POSEIDON-3C Tracking Modes
2.3.1. Autonomous Acquisition and Tracking Mode (M1)
2.3.2. The DIODE Acquisition and Autonomous Tracking Mode (M2)
2.3.3. The DIODE and DEM Mode (M3, M4 and M4bis)
2.3.4. Transitions Between Modes
2.4. POSEIDON-3C Calibration Modes
2.4.1. Calibration of the Point Target Response (CAL1)
2.4.2. Calibration of Reception Gain Steps (AGC CAL1)
2.4.3. Calibration of Reception Filter (CAL2)
2.5. POSEIDON-3C Digital Elevation Model
3. POSEIDON-3C In-Flight Assessment
3.1. Description of the In-Flight Assessment
3.2. Functional Assessment of POSEIDON-3C Tracking Modes
3.2.1. Altimeter Modes Assessment
3.2.2. Functional Characterization over Ocean
3.2.2.1. Tracking
3.2.2.2. Automatic Gain Control
3.2.2.3. SNR
3.2.3. Functional Characterization over Inland Waters
3.2.4. Functional Characterization over Coastal Zones
3.2.5. Saturation
3.3. Long-Term Monitoring
3.3.1. Instrument Temperatures
3.3.2. CAL1 Monitoring
- The Internal Path Delay (IPD) that corresponds to the shift between the middle of the receiving window and the middle of the PTR. It is computed here using the half-power method;
- The Width of the Main Lobe (WML) of the PTR;
- The total power of the PTR;
- The peak-power and peak-position of the five first sidelobes;
- Dissymmetry between the right-hand and left-hand sides.
3.3.3. CAL2 Monitoring
3.3.4. Monitoring of the AGC Steps Stability
3.4. Special Calibrations
3.4.1. PTR In-Orbit Stability
3.4.2. Oversampled CAL2 with Different AGC Codes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviations | Terms |
---|---|
ADC | Analog to Digital Converter |
AGC | Automatic Gain Control |
APD | Amplitude Phase Demodulator |
CL | Closed Loop |
CLS | Collecte Localisation Satellites |
CNES | Centre National d’Etudes Spatiales |
DC | Direct Current |
DEM | Digital Elevation Model |
DIODE | DORIS Immediate Orbit On-Board Determination |
DORIS | Doppler Orbitography by Radiopositioning Integrated on Satellite |
FFT | Fast Fourier Transform |
GRanD | Global Reservoir and Dam Database |
GSHHG | Global Self-Consistent, Hierarchical, High-resolution Geography |
HK | Housekeeping |
IPD | Internal Path Delay |
KaRIn | Ka-band Radar Interferometer |
LAK | Lakes |
LPF | Low-Pass Filter |
LTM | Long-Term Monitoring |
NASA | National Aeronautics and Space Administration |
OL | Open-Loop |
OLTC | Open-Loop Tracking Command |
PCU | Processing and Control Unit |
PF | Platform |
PL | Payload |
PRF | Pulse Repetition Frequency |
PTR | Point Target Response |
RES | Reservoirs |
RF | Radio Frequency |
RFU | Radio Frequency Unit |
RIV | Rivers |
Rx | Receiver |
SNR | Signal to Noise Ratio |
SSPA | Solid-State Power Amplifier |
SWH | Significant Wave Height |
SWORD | SWOT River Database |
SWOT | Surface Water and Ocean Topography |
TAS | Thales Alenia Space |
THR | Thermistor |
Tx | Transmitter |
USO | Ultra- Stable Oscillator |
UTC | Universal Time Coordinated |
WML | Width of the Main Lobe |
References
- Chelton, D. Pulse Compression and Sea Level Tracking in Satellite Altimetry. J. Atmos. Ocean. Technol. 1989, 6, 407–438. [Google Scholar] [CrossRef]
- Jason-3 Products Handbook, Aviso; 2021. Available online: https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j3.pdf (accessed on 18 October 2024).
- Bignalet-Cazalet, F.; Roinard, H.; Pirotte, T.; Picard, B.; Homerin, A.; Kientz, N.; Nouvel de la Flèche, A.; Maraldi, C.; Raynal, M.; Picot, N. Calibration and validation performance assessment for SWOT’s nadir altimeter. Remote Sens. 2024; submitted. [Google Scholar]
- Desjonquères, J.D.; Carayon, G.; Steunou, N.; Lambin, J. POSEIDON-3 Radar Altimeter: New Modes and In-Flight Performances. Mar. Geod. 2010, 33, 53–79. [Google Scholar] [CrossRef]
- Le Gac, S.; Boy, F.; Blumstein, D.; Lasson, L.; Picot, N. Benefits of the Open-Loop Tracking Command (OLTC): Extending conventional nadir altimetry to inland waters monitoring. Adv. Space Res. 2021, 68, 843–852. [Google Scholar] [CrossRef]
- Hernandez, F.; Schaeffer, P. The CLS01 Mean Sea Surface: A Validation with the GSFC00.1 Surface; CLS: Ramonville-Saint-Agne, France, 2001. [Google Scholar]
- Smith, R.G.; Berry, P.A.M. ACE2: Global Digital Elevation Model, EAPRS Laboratory; De Montfort University: Leicester, UK, 2010. [Google Scholar]
- Wessel, P.; Smith, W.H.F. GSHHG-A Global Self-Consistent, Hierarchical, High-resolution Geography Database, version 2.3.7; 2017. Available online: https://www.soest.hawaii.edu/pwessel/gshhg/ (accessed on 18 October 2024).
- Brown, G. The average impulse response of a rough surface and its applications. IEEE Trans. Antennas Propag. 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Calmant, S.; Seyler, F.; Cretaux, J.F. Monitoring continental surface waters by satellite altimetry. Surv. Geophys. 2008, 29, 247–269. [Google Scholar] [CrossRef]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications, 3rd ed.; Microcosm Press: New York, NY, USA; Springer: New York, NY, USA, 2007; ISBN 978-1881883142. [Google Scholar]
- Dinardo, S.; Maraldi, C.; Daguze, J.A.; Amraoui, S.; Boy, F.; Moreau, T.; Fornari, M.; Cullen, R.; Picot, N. Sentinel-6 MF POSEIDON-4 Radar Altimeter In-Flight Calibration and Performances Monitoring. IEEE Trans. Geosci. Remote Sens. 2022, 60, 337–375. [Google Scholar] [CrossRef]
- Quartly, G.D. Jason-1/Jason-2. Metocean Comparisons and Monitoring. Mar. Geod. 2010, 33, 256–271. [Google Scholar] [CrossRef]
- Zawadzki, L.; Ablain, M.; Carrere, L.; Ray, R.D.; Zelensky, N.P.; Lyard, F.; Guillot, A.; Picot, N. Investigating the 59-Day Error Signal in the Mean Sea Level Derived From TOPEX/Poseidon, Jason-1, and Jason-2 Data With FES and GOT Ocean Tide Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3244–3255. [Google Scholar] [CrossRef]
- Thibaut, P.; Piras, F.; Roinard, H.; Guerou, A.; Boy, F.; Maraldi, C.; Picot, N. Benefits of the “Adaptive Retracking Solution” for the JASON-3 GDR-F Reprocessing Campaign. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7422–7425. [Google Scholar]
- Tourain, C.; Piras, F.; Ollivier, A.; Hauser, D.; Poisson, J.C.; Boy, F.; Tison, C. Benefits of the adaptive algorithm for retracking altimeter nadir echoes: Results from simulations and CFOSAT/SWIM observations. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9927–9994. [Google Scholar] [CrossRef]
- Amarouche, L.; Thibaut, P.; Zanife, O.Z.; Dumont, J.-P.; Vincent, P.; Steunou, N. Improving the Jason-1 ground retracking to better account for attitude effects. Mar. Geod. 2004, 27, 171–197. [Google Scholar] [CrossRef]
Mode | Description |
---|---|
M1 | Autonomous acquisition and tracking |
M2 | DIODE acquisition/autonomous tracking |
M3 | DIODE + DEM |
M4 | DIODE + DEM with auto transition |
M4bis | DIODE + DEM with auto transition and direct transition from open loop to closed loop enabled |
Modification Date | Implemented Tracking Mode | |
---|---|---|
16 January 2023 | M1 | Autonomous acquisition and tracking |
6 February 2023 | M2 | DIODE acquisition/autonomous tracking |
13 February 2023 | M3 | DIODE + DEM |
20 February 2023 | M4 | DIODE + DEM with auto transition |
20 March 2023 | M4bis | DIODE + DEM with auto transition and direct transition from OL to CL |
21 July 2023 | M1 | Autonomous acquisition and tracking |
9 October 2023 | M4bis | DIODE + DEM with auto transition and direct transition from OL to CL |
Tracking Mode | % of Tracking | % of Data Loss |
---|---|---|
M1 | 99.9602 | 0.0398 |
M4bis | 99.9994 | 0.0006 |
Tracking Mode | % of Tracking | % of Data Loss |
---|---|---|
M1 | 98.453 | 1.547 |
M4bis | 99.9926 | 0.0074 |
Surface Type | Nb SWOT | % SWOT | Nb J3 | % J3 |
---|---|---|---|---|
Open ocean: |lat| < 55° + dist > 50 km | 18 | 0.0001% | 18 | 0.0001% |
Land: |dist < 0 km | 155,211 | 1.5% | 328,304 | 3.8% |
Sea-ice: |lat| > 55° + dist > 50 km | 159,314 | 2.8% | 101,721 | 1.7% |
Coastal areas: 0 km ≥ dist ≥ 50 km | 41,187 | 1.8% | 20,243 | 1.1% |
Total | 355,730 | 1.1% | 450,286 | 1.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guérin, A.; Piras, F.; Cuvillon, N.; Homerin, A.; Le Gac, S.; Maraldi, C.; Bignalet-Cazalet, F.; Alves, M.; Rey, L. Description and In-Flight Assessment of the POSEIDON-3C Altimeter of the SWOT Mission. Remote Sens. 2024, 16, 4183. https://doi.org/10.3390/rs16224183
Guérin A, Piras F, Cuvillon N, Homerin A, Le Gac S, Maraldi C, Bignalet-Cazalet F, Alves M, Rey L. Description and In-Flight Assessment of the POSEIDON-3C Altimeter of the SWOT Mission. Remote Sensing. 2024; 16(22):4183. https://doi.org/10.3390/rs16224183
Chicago/Turabian StyleGuérin, Alexandre, Fanny Piras, Nicolas Cuvillon, Alexandre Homerin, Sophie Le Gac, Claire Maraldi, François Bignalet-Cazalet, Marta Alves, and Laurent Rey. 2024. "Description and In-Flight Assessment of the POSEIDON-3C Altimeter of the SWOT Mission" Remote Sensing 16, no. 22: 4183. https://doi.org/10.3390/rs16224183
APA StyleGuérin, A., Piras, F., Cuvillon, N., Homerin, A., Le Gac, S., Maraldi, C., Bignalet-Cazalet, F., Alves, M., & Rey, L. (2024). Description and In-Flight Assessment of the POSEIDON-3C Altimeter of the SWOT Mission. Remote Sensing, 16(22), 4183. https://doi.org/10.3390/rs16224183