Early Modeling of the Upcoming Landsat Next Constellation for Soybean Yield Prediction Under Varying Levels of Water Availability
Abstract
:1. Introduction
2. The Landsat Next Mission
3. Materials and Methods
3.1. Experimental Area
3.2. Weather Monitoring, Soil Moisture and Yield
3.3. Spectral Data Acquisition and Processing
3.4. Statistical Analysis
3.4.1. Principal Component Analysis (PCA)
3.4.2. Landsat Next Spectral Bands
3.4.3. Landsat Next Vegetation Indices (VIs)
3.4.4. Partial Least Squares Regression (PLSR)
4. Results and Discussion
4.1. Soybean Spectral Behavior as Affected by Water Availability and Contribution of Landsat Next Spectral Bands for Water Status Monitoring
4.2. Spectral Modeling for Soybean Yield Prediction Based on Landsat Next Reflectance
4.2.1. Landsat Next Spectral Bands
4.2.2. Landsat Next Vegetation Indices (VIs)
4.2.3. Partial Least Squares Regression (PLSR)
4.3. Comparison of Prediction Performance Using Spectral Bands, Vegetation Indices and PLSR Models
4.4. Perspectives for Improving Landsat Next Spectral Models for Soybean Yield Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NASA—National Aeronautics and Space Administration. Landsat Next: A New & Revolutionary Mission. 2024. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-next/ (accessed on 10 March 2024).
- USGS—United States Geological Survey. Landsat Next, 2024. Available online: https://www.usgs.gov/landsat-missions/landsat-next (accessed on 10 March 2024).
- Rio, A.D.; Sentelhas, P.C.; Farias, J.R.B.; Sibaldelli, R.N.R.; Ferreira, R.C. Alternative sowing dates as a mitigation measure to reduce climate change impacts on soybean yields in southern Brazil. Int. J. Climatol. 2016, 36, 3664–3672. [Google Scholar] [CrossRef]
- CONAB—National Company of Food Supply. Brazilian Crop Assessment–Grain, 2023/2024 Crops, Eighth Inventory Survey, May/2024. 2024. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 12 June 2024).
- Sentelhas, P.C.; Battisti, R.; Câmara, G.M.S.; Farias, J.R.B.; Hampf, A.C.; Nendel, C. The soybean yield gap in Brazil—Magnitude, causes and possible solutions for sustainable production. J. Agric. Sci. 2015, 153, 1394–1411. [Google Scholar] [CrossRef]
- Ferreira, R.C. Quantificação das Perdas por Seca na Cultura da Soja o Brasil. Ph.D. Thesis, Universidade Estadual de Londrina, Londrina, Brazil, 2016. [Google Scholar]
- Foloni, J.; Nepomuceno, A.; Mertz-Henning, L.M.; Farias, J.; Neumaier, N.; Goncalves, S.; Moraes, L.; Debiasi, H.; Franchini, J.; Balbinot Junior, A.A.; et al. Programa de Tecnologias para Enfrentamento da Seca na Soja-TESS. Embrapa Soja, Brazil, 2023. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1156693/tess-programa-de-tecnologias-para-enfrentamento-da-seca-na-soja (accessed on 15 July 2024).
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Dado, W.T.; Deines, J.M.; Patel, R.; Liang, S.Z.; Lobell, D.B. High-Resolution Soybean Yield Mapping Across the US Midwest Using Subfield Harvester Data. Remote Sens. 2020, 12, 3471. [Google Scholar] [CrossRef]
- Crusiol, L.G.; Sun, L.; Sibaldelli, R.N.; Junior, V.F.; Furlaneti, W.X.; Chen, R.; Sun, Z.; Wuyun, D.; Chen, Z.; Nanni, M.R.; et al. Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precis. Agric. 2022, 23, 1093–1123. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, G.; Liu, J.; Cao, J.; Li, C.; Zhao, X.; Gai, J.; Zhang, X.; Zhao, J.; et al. Establishment of plot-yield prediction models in soybean breeding programs using UAV-based hyperspectral remote sensing. Remote Sens. 2019, 11, 2752. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- da Silva, E.E.; Baio, F.H.R.; Teodoro, L.P.R.; da Silva Junior, C.A.; Borges, R.S.; Teodoro, P.E. UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation. Remote Sens. Appl. Soc. Environ. 2020, 18, 100318. [Google Scholar] [CrossRef]
- Christenson, B.S.; Schapaugh, W.T., Jr.; An, N.; Price, K.P.; Prasad, V.; Fritz, A.K. Predicting soybean relative maturity and seed yield using canopy reflectance. Crop Sci. 2016, 56, 625–643. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Sun, L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Yield Prediction in Soybean Crop Grown under Different Levels of Water Availability Using Reflectance Spectroscopy and Partial Least Squares Regression. Remote Sens. 2021, 13, 977. [Google Scholar] [CrossRef]
- Carneiro, F.M.; Furlani, C.E.A.; Zerbato, C.; de Menezes, P.C.; da Silva Gírio, L.A.; de Oliveira, M.F. Comparison between vegetation indices for detecting spatial and temporal variabilities in soybean crop using canopy sensors. Precis. Agric. 2020, 21, 979–1007. [Google Scholar] [CrossRef]
- Prey, L.; Schmidhalter, U. Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat. ISPRS J. Photogramm. Remote Sens. 2019, 149, 176–187. [Google Scholar] [CrossRef]
- Laurin, G.V.; Puletti, N.; Hawthorne, W.; Liesenberg, V.; Corona, P.; Papale, D.; Chen, Q.; Valentini, R. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 2016, 176, 163–176. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Sykioti, O.; Zlinszky, A.; Tóth, V.R. Evaluating sentinel-2 for lakeshore habitat mapping based on airborne hyperspectral data. Sensors 2015, 15, 22956–22969. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Pandit, A.; Pappula, S. Simulation of Sentinel-2 data using Hyperspectral Data for Bare Surface Soil Moisture Estimation. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Clark, M.L. Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping. Remote Sens. Environ. 2017, 200, 311–325. [Google Scholar] [CrossRef]
- Perich, G.; Aasen, H.; Verrelst, J.; Argento, F.; Walter, A.; Liebisch, F. Crop nitrogen retrieval methods for simulated sentinel-2 data using in-field spectrometer data. Remote Sens. 2021, 13, 2404. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, A.; Kang, X.; He, N.; Dong, G. Estimation of the grassland aboveground biomass of the Inner Mongolia Plateau using the simulated spectra of Sentinel-2 images. Remote Sens. 2020, 12, 4155. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS J. Photogramm. Remote Sens. 2015, 110, 55–65. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Pandit, A.; Mittal, A.; Pappula, S. Investigating the Performance of Hyperspectral and Simulated Sentinel-2 Data for Soybean Canopy Nitrogen Estimation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7059–7062. [Google Scholar] [CrossRef]
- da Silva Junior, C.A.; Teodoro, L.P.; Teodoro, P.E.; Baio, F.H.; de Andrea Pantaleão, A.; Capristo-Silva, G.F.; Facco, C.U.; de Oliveira-Júnior, J.F.; Shiratsuchi, L.S.; Skripachev, V.; et al. Simulating multispectral MSI bandsets (Sentinel-2) from hyperspectral observations via spectroradiometer for identifying soybean cultivars. Remote Sens. Appl. Soc. Environ. 2020, 19, 100328. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture—Alternative Pathways to 2050. Summary Version. Rome. 2018, 224p. Licence: CC BY-NC-SA 3.0 IGO. Available online: http://www.fao.org/3/I8429EN/i8429en.pdf (accessed on 31 March 2024).
- Nepomuceno, A.L.; Balbinot Junior, A.A.; Rufino, C.F.; Debiasi, H.; Nogueira, M.A.; Franchini, J.C.; Alves, F.V.; de Almeida, R.G.; Bungenstab, D.J.; Dall’Agnol, V.F. LCS Program—Low Carbon Soybean: A New Concept of Sustainable Soybean. Embrapa Soja, Brazil, 2021, Londrina. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/doc/1152814/1/COMUNICADO-TEC-101-SBC-ingles.pdf (accessed on 12 June 2024).
- Sakamoto, T. Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS J. Photogramm. Remote Sens. 2020, 160, 208–228. [Google Scholar] [CrossRef]
- Su, X.; Nian, Y.; Yue, H.; Zhu, Y.; Li, J.; Wang, W.; Sheng, Y.; Ma, Q.; Liu, J.; Wang, W.; et al. Improving Wheat Leaf Nitrogen Concentration (LNC) Estimation across Multiple Growth Stages Using Feature Combination Indices (FCIs) from UAV Multispectral Imagery. Agronomy 2024, 14, 1052. [Google Scholar] [CrossRef]
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Serbin, G.; Dennison, P.; Kokaly, R.F.; Wu, Z.; Masek, J.G. Evaluation of SWIR crop residue bands for the Landsat Next mission. Remote Sens. 2021, 13, 3718. [Google Scholar] [CrossRef]
- Lamb, B.T.; Dennison, P.E.; Hively, W.D.; Kokaly, R.F.; Serbin, G.; Wu, Z.; Dabney, P.W.; Masek, J.G.; Campbell, M.; Daughtry, C.S.T. Optimizing Landsat Next shortwave infrared bands for crop residue characterization. Remote Sens. 2022, 14, 6128. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Eberhardt, I.D.R.; Schultz, B.; Rizzi, R.; Sanches, I.D.; Formaggio, A.R.; Atzberger, C.; Mello, M.P.; Immitzer, M.; Trabaquini, K.; Foschiera, W.; et al. Cloud cover assessment for operational crop monitoring systems in tropical areas. Remote Sens. 2016, 8, 219. [Google Scholar] [CrossRef]
- Embrapa Soja. Tecnologias de Produção de Soja—Região Central do Brasil 2020 (Technologies for Soybean Production—Central Region of Brazil 2020); Embrapa Soja: Londrina, Brazil, 2020. [Google Scholar]
- USDA—United States Department of Agriculture—Natural Resources Conservation Service. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; USDA: Washington, DC, USA, 1999. [Google Scholar]
- Wrege, M.S.; Steinmetz, S.; Reiser Júnior, C.; de Almeida, I.R. Atlas Climático da Região Sul do Brasil: Estados do Paraná. St. Catarina e Rio Grande do Sul. Embrapa Clima Temperado: Pelotas, Brazil; Embrapa Florestas: Colombo, Brazil, 2012. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. The Water Balance; Laboratory of Climatology: Centerton, AR, USA, 1955. [Google Scholar]
- Sibaldelli, R.N.R.; Farias, J.R.B. Boletim Agrometeorológico da Embrapa Soja, Londrina, PR–2016. Embrapa Soja, Brazil 2017, Londrina. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1067152 (accessed on 15 June 2020).
- Sibaldelli, R.N.R.; Farias, J.R.B. Boletim Agrometeorológico da Embrapa Soja, Londrina, PR–2017. Embrapa Soja, Brazil, 2018, Londrina. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1087963 (accessed on 15 June 2020).
- Sibaldelli, R.N.R.; Farias, J.R.B. Boletim Agrometeorológico da Embrapa Soja, Londrina, PR–2018. Embrapa Soja, Brazil, 2019, Londrina. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1109091/1/DOC4111.pdf (accessed on 15 June 2020).
- Sibaldelli, R.N.R.; Crusiol, L.G.T.; da Silva, B.M.; Goncalves, S.L.; Farias, J.R.B. Boletim Agrometeorológico da Embrapa Soja, Londrina, PR–2022. Embrapa Soja, Brazil, 2023, Londrina. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1151944 (accessed on 15 June 2020).
- Sibaldelli, R.N.R.; Crusiol, L.G.T.; da Silva, B.M.; Goncalves, S.L.; Farias, J.R.B. Boletim Agrometeorológico da Embrapa Soja, Londrina, PR–2023. Embrapa Soja, Brazil, 2024, Londrina. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1162239 (accessed on 15 June 2020).
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 80; Iowa State University of Science and Technology: Ames, IA, USA, 1977. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciênc. Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Nogueira, S.D.S.S.; Nagai, V. Deficiência hídrica simulada nos diferentes estádios de desenvolvimento de um cultivar precoce de soja. Bragantia 1988, 47, 9–14. [Google Scholar] [CrossRef]
- Rolla, A.A.D.P.; Carvalho, J.D.F.C.; Fuganti-Pagliarini, R.; Engels, C.; Rio, A.D.; Marin, S.R.R.; De Oliveira, M.C.N.; Beneventi, M.A.; Marcelino-Guimarães, F.C.; Farias, J.R.B.; et al. Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res. 2014, 23, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.D.F.C.; Crusiol, L.G.T.; Perini, L.J.; Sibaldelli, R.N.R.; Ferreira, L.C.; Marcelino-Guimarães, F.C.; Nepomuceno, A.L.; Neumaier, N.; Farias, J.R.B. Phenotyping Soybeans for Drought Responses Using Remote Sensing Techniques and Non-Destructive Physiological Analysis. Glob. Sci. Technol. 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Carvalho, J.d.F.C.; Sibaldelli, R.N.R.; Neiverth, W.; Rio, A.D.; Ferreira, L.C.; Procópio, S.d.O.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precis. Agric. 2017, 18, 470–490. [Google Scholar] [CrossRef]
- Streher, A.S.; da Silva Torres, R.; Morellato, L.P.C.; Silva, T.S.F. Accuracy and limitations for spectroscopic prediction of leaf traits in seasonally dry tropical environments. Remote Sens. Environ. 2020, 244, 111828. [Google Scholar] [CrossRef]
- Kross, A.; Znoj, E.; Callegari, D.; Kaur, G.; Sunohara, M.; Lapen, D.R.; McNairn, H. Using Artificial Neural Networks and Remotely Sensed Data to Evaluate the Relative Importance of Variables for Prediction of Within-Field Corn and Soybean Yields. Remote Sens. 2020, 12, 2230. [Google Scholar] [CrossRef]
- ESA—The European Space Agency. Sentinel-2 User Guide. 2021. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi (accessed on 10 March 2024).
- USGS—United States Geological Survey. Landsat 9. 2024. Available online: https://www.usgs.gov/landsat-missions/landsat-9 (accessed on 10 March 2024).
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Furlanetto, R.H.; Crusiol, L.G.T.; Nanni, M.R.; de Oliveira Junior, A.; Sibaldelli, R.N.R. Hyperspectral Data for Early Identification and Classification of Potassium Deficiency in Soybean Plants (Glycine max (L.) Merrill). Remote Sens. 2024, 16, 1900. [Google Scholar] [CrossRef]
- Furlanetto, R.H.; Crusiol, L.G.T.; Gonçalves, J.V.F.; Nanni, M.R.; de Oliveira Junior, A.; de Oliveira, F.A.; Sibaldelli, R.N.R. Machine learning as a tool to predict potassium concentration in soybean leaf using hyperspectral data. Precis. Agric. 2023, 24, 2264–2292. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Zhou, Z.; Morel, J.; Parsons, D.; Kucheryavskiy, S.V.; Gustavsson, A.-M. Estimation of yield and quality of legume and grass mixtures using partial least squares and support vector machine analysis of spectral data. Comput. Electron. Agric. 2019, 162, 246–253. [Google Scholar] [CrossRef]
- Yendrek, C.R.; Tomaz, T.; Montes, C.M.; Cao, Y.; Morse, A.M.; Brown, P.J.; Mcintyre, L.M.; Leakey, A.D.B.; Ainsworth, E.A. High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiol. 2017, 173, 614–626. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato yield prediction using machine learning techniques and sentinel 2 data. Remote Sens. 2019, 11, 1745. [Google Scholar] [CrossRef]
- de Souza, A.M.; Breitkreitz, M.C.; Filgueiras, P.R.; Rohwedder, J.J.R.; Poppi, R.J. Experimento didático de quimiometria para calibração multivariada na determinação de paracetamol em comprimidos comerciais utilizando espectroscopia no infravermelho próximo: Um tutorial, parte II. Quím. Nova 2013, 36, 1057–1065. [Google Scholar] [CrossRef]
- Damm, A.; Paul-Limoges, E.; Haghighi, E.; Simmer, C.; Morsdorf, F.; Schneider, F.D.; van der Tol, C.; Migliavacca, M.; Rascher, U. Remote sensing of plant-water relations: An overview and future perspectives. J. Plant Physiol. 2018, 227, 3–19. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Miller, A.J.; Ghulam, A. Discriminating spectral signatures among and within two closely related grapevine species. Photogramm. Eng. Remote Sens. 2016, 82, 51–62. [Google Scholar] [CrossRef]
- Falcioni, R.; Moriwaki, T.; Pattaro, M.; Furlanetto, R.H.; Nanni, M.R.; Antunes, W.C. High resolution leaf spectral signature as a tool for foliar pigment estimation displaying potential for species differentiation. J. Plant Physiol. 2020, 249, 153161. [Google Scholar] [CrossRef]
- Carter, G.A. Primary and secondary effects of water content on the spectral reflectance of leaves. Am. J. Bot. 1991, 78, 916–924. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.A.; Elsayed, S.; Hassan, W.M.; Dewir, Y.H.; Refay, Y.; Abdella, K.A. Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 2019, 217, 356–373. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Braga, P.; Crusiol, L.G.T.; Nanni, M.R.; Caranhato, A.L.H.; Fuhrmann, M.B.; Nepomuceno, A.L.; Neumaier, N.; Farias, J.R.B.; Koltun, A.; Gonçalves, L.S.A.; et al. Vegetation indices and NIR-SWIR spectral bands as a phenotyping tool for water status determination in soybean. Precis. Agric. 2021, 22, 249–266. [Google Scholar] [CrossRef]
- Singer, J.W.; Meek, D.W.; Sauer, T.J.; Prueger, J.H.; Hatfield, J.L. Variability of light interception and radiation use efficiency in maize and soybean. Field Crops Res. 2011, 121, 147–152. [Google Scholar] [CrossRef]
- Marinho, J.P.; Kanamori, N.; Ferreira, L.C.; Fuganti-Pagliarini, R.; Carvalho, J.D.F.C.; Freitas, R.A.; Marin, S.R.R.; Rodrigues, F.A.; Mertz-Henning, L.M.; Farias, J.R.B.; et al. Characterization of molecular and physiological responses under water deficit of genetically modified soybean plants overexpressing the AtAREB1 transcription factor. Plant Mol. Biol. Report. 2016, 34, 410–426. [Google Scholar] [CrossRef]
- Honna, P.T.; Fuganti-Pagliarini, R.; Ferreira, L.C.; Molinari, M.D.; Marin, S.R.; de Oliveira, M.C.; Farias, J.R.B.; Neumaier, N.; Mertz-Henning, L.M.; Kanamori, N.; et al. Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance. Mol. Breed. 2016, 36, 157. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Arkebauer, T.J.; Suyker, A.E. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: Implications for remote sensing of crop primary production. J. Plant Physiol. 2015, 177, 100–109. [Google Scholar] [CrossRef]
- Gitelson, A.A. Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: Generic algorithm for maize and soybean. Remote Sens. Lett. 2019, 10, 283–291. [Google Scholar] [CrossRef]
- Latimer, P. Apparent shifts of absorption bands of cell suspensions and selective light scattering. Science 1958, 127, 29–30. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Zhang, B. Evaluation of hyperspectral indices for retrieval of canopy equivalent water thickness and gravimetric water content. Int. J. Remote Sens. 2016, 37, 3384–3399. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Hardisky, M.A.; Klemas, V.; Smart, M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Leon, C.T.; Shaw, D.R.; Cox, M.S.; Abshire, M.J.; Ward, B.; Wardlaw, M.C.; Watson, C. Utility of remote sensing in predicting crop and soil characteristics. Precis. Agric. 2003, 4, 359–384. [Google Scholar] [CrossRef]
- Ullah, S.; Skidmore, A.K.; Ramoelo, A.; Groen, T.A.; Naeem, M.; Ali, A. Retrieval of leaf water content spanning the visible to thermal infrared spectra. ISPRS J. Photogramm. Remote Sens. 2014, 93, 56–64. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Sun, L.; Gonçalves, S.L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance. Agric. Water Manag. 2023, 277, 108089. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Braga, P.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Sun, L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; et al. Using leaf-based hyperspectral reflectance for genotype classification within a soybean germplasm collection assessed under different levels of water availability. Int. J. Remote Sens. 2021, 42, 8165–8184. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Sun, L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Classification of soybean genotypes assessed under different water availability and at different phenological stages using leaf-based hyperspectral reflectance. Remote Sens. 2021, 13, 172. [Google Scholar] [CrossRef]
- Da Silva Junior, C.A.; Nanni, M.R.; Shakir, M.; Teodoro, P.E.; de Oliveira-Júnior, J.F.; Cezar, E.; de Gois, G.; Lima, M.; Wojciechowski, J.C.; Shiratsuchi, L.S. Soybean varieties discrimination using non-imaging hyperspectral sensor. Infrared Phys. Technol. 2018, 89, 338–350. [Google Scholar] [CrossRef]
- Fuganti-Pagliarini, R.; Ferreira, L.C.; Rodrigues, F.A.; Molinari, H.B.; Marin, S.R.; Molinari, M.D.; Marin, S.R.; Molinari, M.D.C.; Marcolino-Gomes, J.; Mertz-Henning, L.M.; et al. Characterization of soybean genetically modified for drought tolerance in field conditions. Front. Plant Sci. 2017, 8, 448. [Google Scholar] [CrossRef]
- Zheng, H.; Ji, W.; Wang, W.; Lu, J.; Li, D.; Guo, C.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y.; et al. Transferability of models for predicting rice grain yield from unmanned aerial vehicle (UAV) multispectral imagery across years, cultivars and sensors. Drones 2022, 6, 423. [Google Scholar] [CrossRef]
- Skobalski, J.; Sagan, V.; Alifu, H.; Al Akkad, O.; Lopes, F.A.; Grignola, F. Bridging the gap between crop breeding and GeoAI: Soybean yield prediction from multispectral UAV images with transfer learning. ISPRS J. Photogramm. Remote Sens. 2024, 210, 260–281. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Lamquin, N.; Woolliams, E.; Bruniquel, V.; Gascon, F.; Gorroño, J.; Govaerts, Y.; Leroy, V.; Lonjou, V.; Alhammoud, B.; Barsi, J.A.; et al. An inter-comparison exercise of Sentinel-2 radiometric validations assessed by independent expert groups. Remote Sens. Environ. 2019, 233, 111369. [Google Scholar] [CrossRef]
- Munyati, C.; Balzter, H.; Economon, E. Correlating Sentinel-2 MSI-derived vegetation indices with in-situ reflectance and tissue macronutrients in savannah grass. Int. J. Remote Sens. 2020, 41, 3820–3844. [Google Scholar] [CrossRef]
Band Number | Spectral Band | Spatial Resolution (m) | Wavelength Range (nm) |
---|---|---|---|
1 | Violet | 60 | 402–422 |
2 | Coastal/Aerosol | 20 | 433–453 |
3 * | Blue | 10 | 457.5–522.5 |
4 * | Green | 10 | 542.5–577.5 |
5 * | Yellow | 20 | 585–615 |
6 * | Orange | 20 | 610–630 |
7 * | Red 1 | 20 | 640–660 |
8 * | Red 2 | 10 | 650–680 |
9 * | Red Edge 1 | 20 | 697.5–712.5 |
10 * | Red Edge 2 | 20 | 732.5–747.5 |
11 * | NIR Broad | 10 | 784.5–899.5 |
12 | NIR 1 | 20 | 855–875 |
13 | Water Vapor | 60 | 935–955 |
14 * | Liquid Water | 20 | 975–995 |
15 * | Snow/Ice1 | 20 | 1025–1045 |
16 * | Snow/Ice 2 | 20 | 1080–1100 |
17 | Cirrus | 60 | 1360–1390 |
18 * | SWIR 1 | 10 | 1565–1655 |
19 * | SWIR 2a | 20 | 2025.5–2050.5 |
20 * | SWIR 2b | 20 | 2088–2128 |
21 * | SWIR 2c | 20 | 2191–2231 |
22 | TIR 1 | 60 | 8175–8425 |
23 | TIR 2 | 60 | 8425–8775 |
24 | TIR 3 | 60 | 8925–9275 |
25 | TIR 4 | 60 | 11,025–11,575 |
26 | TIR 5 | 60 | 11,725–12,275 |
Cropping Season | Sowing | Water Deficit Induced at Vegetative Stages | Water Deficit Induced at Reproductive Stages | Harvesting |
---|---|---|---|---|
2016–2017 | 19 October 2016 | From 37 DAS to 54 DAS | From 54 DAS to the harvesting period | From 116 DAS |
2017–2018 | 18 October 2017 | From 33 DAS to 62 DAS | From 62 DAS to the harvesting period | From 139 DAS |
2018–2019 | 16 October 2018 | From 41 DAS to 64 DAS | From 64 DAS to 90 DAS | From 129 DAS |
2022–2023 | 25 October 2022 | From 41 DAS to 76 DAS | From 76 DAS to 106 DAS | From 125 DAS |
2023–2024 | 19 October 2023 | From 30 DAS to 54 DAS | From 54 DAS to 83 DAS | From 109 DAS |
2016–2017 Cropping Season | 2018–2019 Cropping Season | 2023–2024 Cropping Season | ||||||
---|---|---|---|---|---|---|---|---|
DAS | Quantity (mm) | Duration (minutes) | DAS | Quantity (mm) | Duration (minutes) | DAS | Quantity (mm) | Duration (minutes) |
24 | 14.4 | 60 | 52 | 14.4 | 60 | 22 | 12.0 | 50 |
29 | 4.8 | 20 | 53 | 14.4 | 60 | 47 | 10.8 | 45 |
30 | 7.2 | 30 | 57 | 11.5 | 48 | 48 | 6.0 | 25 |
31 | 9.6 | 40 | 58 | 5.7 | 24 | 55 | 12.0 | 50 |
34 | 4.8 | 20 | 59 | 5.7 | 24 | 56 | 7.2 | 30 |
35 | 4.8 | 20 | 61 | 8.4 | 35 | 60 | 14.4 | 60 |
36 | 4.8 | 20 | 66 | 2.9 | 12 | 61 | 8.4 | 35 |
37 | 4.8 | 20 | 106 | 7.2 | 30 | 63 | 9.6 | 40 |
38 | 14.4 | 60 | 109 | 8.4 | 35 | 64 | 10.8 | 45 |
114 | 11.5 | 48 | 69 | 4.8 | 20 | |||
115 | 2.9 | 12 | 70 | 4.8 | 20 | |||
116 | 8.4 | 35 | 71 | 4.8 | 20 | |||
119 | 4.8 | 20 | 75 | 4.8 | 20 | |||
76 | 4.8 | 20 | ||||||
77 | 4.8 | 20 | ||||||
78 | 4.8 | 20 | ||||||
81 | 9.6 | 40 | ||||||
88 | 4.8 | 20 | ||||||
89 | 4.8 | 20 | ||||||
90 | 4.8 | 20 | ||||||
91 | 4.8 | 20 | ||||||
105 | 7.2 | 30 | ||||||
106 | 8.4 | 35 | ||||||
109 | 7.2 | 30 | ||||||
111 | 7.2 | 30 |
Cropping Season | |||||
---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2018–2019 | 2022–2023 | 2023–2024 | |
DAS | 89 | 96 | 94 | 92 | 82 |
Spectral samples | 64 | 80 | 80 | 80 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crusiol, L.G.T.; Nanni, M.R.; Sibaldelli, R.N.R.; Sun, L.; Furlanetto, R.H.; Gonçalves, S.L.; Neumaier, N.; Farias, J.R.B. Early Modeling of the Upcoming Landsat Next Constellation for Soybean Yield Prediction Under Varying Levels of Water Availability. Remote Sens. 2024, 16, 4184. https://doi.org/10.3390/rs16224184
Crusiol LGT, Nanni MR, Sibaldelli RNR, Sun L, Furlanetto RH, Gonçalves SL, Neumaier N, Farias JRB. Early Modeling of the Upcoming Landsat Next Constellation for Soybean Yield Prediction Under Varying Levels of Water Availability. Remote Sensing. 2024; 16(22):4184. https://doi.org/10.3390/rs16224184
Chicago/Turabian StyleCrusiol, Luís Guilherme Teixeira, Marcos Rafael Nanni, Rubson Natal Ribeiro Sibaldelli, Liang Sun, Renato Herrig Furlanetto, Sergio Luiz Gonçalves, Norman Neumaier, and José Renato Bouças Farias. 2024. "Early Modeling of the Upcoming Landsat Next Constellation for Soybean Yield Prediction Under Varying Levels of Water Availability" Remote Sensing 16, no. 22: 4184. https://doi.org/10.3390/rs16224184
APA StyleCrusiol, L. G. T., Nanni, M. R., Sibaldelli, R. N. R., Sun, L., Furlanetto, R. H., Gonçalves, S. L., Neumaier, N., & Farias, J. R. B. (2024). Early Modeling of the Upcoming Landsat Next Constellation for Soybean Yield Prediction Under Varying Levels of Water Availability. Remote Sensing, 16(22), 4184. https://doi.org/10.3390/rs16224184