Unlocking the Secrets of Corn: Physiological Responses and Rapid Forecasting in Varied Drought Stress Environments
Abstract
:1. Introduction
2. Study Area, Data and Methods
2.1. Subsection
2.2. Experiment Design
2.2.1. Plot Design
2.2.2. Water Control Design
2.3. Observation Parameters
2.3.1. Drone-Based Spatial Measurement
2.3.2. Ground Data Measurement
2.4. Yield-Related Drought Index (YI)
2.4.1. Index Calculation
- (1)
- Color index
- (2)
- Vegetation Index
2.4.2. Data Fusion Method
Random Forest Algorithm (RF)
Convolutional Neural Networks (CNNs)
Multiple Linear Regression (MLR)
3. Results
3.1. Changes in Physiological Parameters of Corn
3.2. Physiological Parameters Impact by Drought Stress
3.3. Canopy Spectral Characteristics
3.4. The Relationship Between Parameters and Yield
3.5. Construction of Drought Index
3.6. Accuracy Assessment of Indicators
3.7. Spatial Distribution of Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jefferson, M. IPCC fifth assessment synthesis report: “Climate change 2014: Longer report”: Key analysis. Technol. Forecast. Soc. Chang. 2015, 92, 362–363. [Google Scholar] [CrossRef]
- Dai, A.G.; Trenberth, K.E.; Qian, T.T. A global dataset of Palmer Drought Severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Leng, P.; Shang, G.F.; Zhang, X.; Li, Z.L. Sun-induced chlorophyll fluorescence is superior to satellite vegetation indices for predicting summer maize yield under drought conditions. Comput. Electron. Agric. 2023, 205, 107615. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.Q. Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change. Nat. Hazards 2016, 81, 1323–1331. [Google Scholar] [CrossRef]
- Li, Y.Y.; Qu, T.T.; Wang, Y.Z.; Yin, Z.; Guo, Z.D.; Wang, G.F.; Li, F.Z.; Zhang, W.P. UAV-Based Remote Sensing to Evaluate Daily Water Demand Characteristics of Maize: A Case Study from Yuci Lifang Organic Dry Farming Experimental Base in Jinzhong City, China. Agronomy 2024, 14, 040729. [Google Scholar] [CrossRef]
- Manpreet, S.; Sukhbir, S.; Ved, P.; Glen, R.; Russell, W.; Sanjit, D. Biochar Implications Under Limited Irrigation for Sweet Corn Production in a Semi-Arid Environment. Front. Plant Sci. 2022, 13, 853746. [Google Scholar]
- Walne, H.C.; Gaudin, A.; Henry, B.W.; Reddy, K.R. In vitro seed germination response of corn hybrids to osmotic stress conditions. Agrosyst. Geosci. Environ. 2020, 3, 20087. [Google Scholar] [CrossRef]
- Manpreet, S.; Sukhbir, S.; Sanjit, D.; Glen, R. Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application. Agric. Water Manag. 2023, 279, 108192. [Google Scholar]
- Zhang, T.; Quan, W.; Tian, J.; Li, J.Z.; Feng, P. Spatial and temporal variations of ecosystem water use efficiency and its response to soil moisture drought in a water-limited watershed of northern China. J. Environ. Manag. 2024, 355, 120251. [Google Scholar] [CrossRef]
- Liao, Q.; Ding, R.S.; Du, T.S.; Kang, S.Z.; Tong, L.; Gu, S.J.; Gao, S.Y.; Gao, J. Stomatal conductance modulates maize yield through water use and yield components under salinity stress. Agric. Water Manag. 2024, 294, 108717. [Google Scholar] [CrossRef]
- Depardieu, C.; Lenz, P.; Marion, J.; Nadeau, S.; Girardin, M.P.; Maochand, W.; Bégin, C.; Treydte, K.; Gessler, A.; Bousquet, J.; et al. Contrasting physiological strategies explain heterogeneous responses to severe drought conditions within local populations of a widespread conifer. Sci. Total Environ. 2024, 923, 171174. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.H.; Huang, Y.Y.; Ma, T.T.; Ma, X.W.; Li, R.H.; Shen, J.X.; Wen, J. BnaABF3 and BnaMYB44 regulate the transcription of zeaxanthin epoxidase genes in carotenoid and abscisic acid biosynthesis. J. Plant Physiol. 2024, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Mobina, S.; Sarah, K.; Hassan, S. Involvement of abscisic acid on antioxidant enzymes activity and gene expression in Lavandula angustifolia cv. Munstead under drought stress. Acta Physiol. Plant. 2024, 46, 3666. [Google Scholar]
- Liu, H.J.; Song, W.L.; Lv, J.; Gui, R.J.; Shi, Y.J.; Lu, Y.Z.; Li, M.Y.; Chen, L.; Chen, X.H. Precise Drought Threshold Monitoring in Winter Wheat Using the Unmanned Aerial Vehicle Thermal Method. Remote Sens. 2024, 16, 710. [Google Scholar] [CrossRef]
- Rohit, N.; Varaprasad, B.; He, J.Y.; Daughtry, C.; Gowda, P.; Suyker, A.E. Evaluating Optical Remote Sensing Methods for Estimating Leaf Area Index for Corn and Soybean. Remote Sens. 2022, 14, 5301. [Google Scholar] [CrossRef]
- Jiao, F.L.; Ding, R.S.; Du, T.S.; Kang, J.; Tong, L.; Gao, J.; Shao, J. Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China. Agric. Water Manag. 2024, 297, 108827. [Google Scholar] [CrossRef]
- Wu, S.X.; Zhang, Y.Y.; Kang, W.R.; Zhao, W.Z. Mesoscale soil moisture survey by mobile cosmic-ray neutron sensor across various landscapes in the Heihe River Basin. Res. Cold Arid. Reg. 2023, 15, 211–218. [Google Scholar] [CrossRef]
- Ishfaq, A.; Elahe, S.; Adam, W.; Mohamad, A. Bayesian inversion of GPR waveforms for sub-surface material characterization: An uncertainty-aware retrieval of soil moisture and overlaying biomass properties. Remote Sens. Environ. 2024, 313, 114351. [Google Scholar]
- Maltese, A.; Capodici, F.; Ciraolo, G.; Loggia, G.L. Mapping soil water content under sparse vegetation and changeable sky conditions: Comparison of two thermal inertia approaches. J. Appl. Remote Sens. 2013, 7, 073548. [Google Scholar]
- Mathieu, A.J.; Aires, F. Assessment of the agro-climatic indices to improve crop yield forecasting. Agric. For. Meteorol. 2018, 253, 25415. [Google Scholar] [CrossRef]
- Zhong, R.H.; Zhu, Y.; Wang, X.H.; Li, H.F.; Wang, B.; You, F.Q.; Rodríguez, L.F.; Huang, J.F.; Ting, K.C.; Ying, Y.B.; et al. Detect and attribute the extreme maize yield losses based on spatio-temporal deep learning. Fundam. Res. 2023, 3, 951–959. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.N.; Zhou, Y.; Liu, D.Y.; Wang, H.T. The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. Sustain. Cities Soc. 2022, 79, 103722. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.Q.; Xing, X.D.; Song, D.X.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Chhabra, Y.; Rawat, S.; Gautam, S. Modelling and Performance Evaluation of Machine Learning Techniques in Forecasting Cereal Yield for Shri Ganganagar Region, Rajasthan, India. Arch. Curr. Res. Int. 2024, 24, 110. [Google Scholar] [CrossRef]
- Joshi, R.V.; Kazula, J.M.; Coulter, A.J.; Naeve, S.L.; Garcia, A.G. In-season weather data provide reliable yield estimates of maize and soybean in the US central Corn Belt. Int. J. Biometeorol. 2020, 65, 489. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Cui, N.B.; Zhang, W.J.; Yang, Y.N.; Gong, D.Z.; Liu, Q.S.; Zhao, L.; Xing, L.W.; He, Q.Y.; Zhu, S.D. Estimation of soil moisture in drip-irrigated citrus orchards using multi-modal UAV remote sensing. Agric. Water Manag. 2024, 302, 108972. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Qiu, X.L.; Wu, Y.T.; Zhu, Y.; Cao, Q.; Liu, X.J.; Cao, W.X. Combining texture, color, and vegetation indices from fixedwing uas imagery to estimate wheat growth parameters using multivariate regression methods. Comput. Electron. Agric. 2021, 185, 1061838. [Google Scholar] [CrossRef]
- Vina, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Atzberger, C.; Guerif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Huang, W.J.; Guan, Q.S.; Luo, J.H.; Zhang, J.C.; Zhao, J.L.; Liang, D.; Huang, L.S.; Zhang, D.Y. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Ma, W.Y.; Feng, Z.K.; Cheng, Z.X.; Chen, S.L.; Wang, F.G. Identifying Forest Fire Driving Factors and Related Impacts in China Using Random Forest Algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, C.X.; Wang, X. Spatio-temporal changes of vegetation coverage in the Loess Plateau of northern Shaanxi and its attribution analysis. Bull. Surv. Mapp. 2022, 8, 27. [Google Scholar]
- Terliksiz, S.A.; Altilar, T.D. Impact of large kernel size on yield prediction: A case study of corn yield prediction with SEDLA in the U.S. Corn Belt. Environ. Res. Commun. 2024, 6, 025011. [Google Scholar] [CrossRef]
- Sun, L.; Yang, C.; Wang, J.; Cui, X.W.; Suo, X.S.; Fan, X.F.; Ji, P.T.; Gao, L.; Zhang, Y.C. Automatic Modeling Prediction Method of Nitrogen Content in Maize Leaves Based on Machine Vision and CNN. Agronomy 2024, 14, 124. [Google Scholar] [CrossRef]
- Mancini, A.; Solfanelli, F.; Coviello, L.; Martini, F.M.; Mandolesi, S.; Zanoli, R. Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning. Agronomy 2024, 14, 109. [Google Scholar] [CrossRef]
- Soleymani, A.; Miransari, M. Light response of barley (Hordeum vulgare L.) and corn (Zea mays L.) as affected by drought stress, plant genotype and N fertilization. Biocatal. Agric. Biotechnol. 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Feng, R.; Zhang, Y.; Yu, W.; Hu, W.; Wu, J.W.; Ji, R.P.; Wang, H.B.; Zhao, X.L. Analysis of the relationship between the spectral characteristics of maize canopy and leaf area index under drought stress. Acta Ecol. Sin. 2013, 33, 301–307. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, H.J.; Cao, J.J.; Li, J.X.; Tian, Q.; Leng, G.Y.; Niyogi, D. Evaluation of machine learning-dynamical hybrid method incorporating remote sensing data for in-season maize yield prediction under drought. Precis. Agric. 2024, 25, 1982–2006. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Kumaraperumal, R.; Shanmugapriya, P.; Sudarmanian, N.S.; Sivamurugan, A.P.; Satheesh, S. Quantification of Biophysical Parameters and Economic Yield in Cotton and Rice Using Drone Technology. Agriculture 2023, 13, 1668. [Google Scholar] [CrossRef]
- Barbosa, A.; Trevisan, R.; Hovakimyan, N.; Martin, N.F. Modeling yield response to crop management using convolutional neural networks. Comput. Electron. Agric. 2020, 170, 105197. [Google Scholar] [CrossRef]
- Jung-Ching, K.; Ferreira, F.S.S.; Georgia, D.; Vieira, P.M.; Barquet, K.; Kalantari, Z. Predicting agricultural drought indicators: ML approaches across wide-ranging climate and land use conditions. Ecol. Indic. 2023, 154, 110524. [Google Scholar]
- Giacomo, L.; William, F.; Guglielmo, R.; Moretti, S. Multitemporal Mapping of Post-Fire Land Cover Using Multiplatform PRISMA Hyperspectral and Sentinel-UAV Multispectral Data: Insights from Case Studies in Portugal and Italy. Sensors 2021, 21, 3982. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, X.X.; Liu, J.Y.; Zhang, D.F.; Lu, Y.; Zhou, Y.H.; Sun, L.; Hou, S.L.; Fan, X.F.; Shen, S.X.; et al. Multispectral Drone Imagery and SRGAN for Rapid Phenotypic Mapping of Individual Chinese Cabbage Plants. Plant Phenomics 2022, 2022, 7. [Google Scholar]
Drought Stress State | |||||
---|---|---|---|---|---|
Mild | Moderate | Severe | Extreme | ||
Drought treatment period | Elongation | P12 | P3 | P4 | P7 |
Tasseling | P2 | P9 | P10 | P8 | |
Silking | P5 | P1 | P6 | P11 |
Drought | Elongation | Tasseling | Silking |
---|---|---|---|
Normal | >70 | >75 | 70 |
Mild | 60–70 | 65–75 | 60–70 |
Moderate | 50–60 | 55–65 | 50–60 |
Severe | 45–50 | 50–55 | 45–50 |
Extreme | ≤45 | ≤50 | ≤45 |
Parameter Name | Model/Value/Function |
---|---|
Gradient Threshold | 1 |
Maximum iterations | 500 |
Optimization function | sgdm |
Execution Environment | Auto |
Initial Learn Rate | 0.03 |
Validation Frequency | 10 |
Mini Batch Size | 128 |
Learn Rate Schedule | piecewise |
Learn Rate Drop Factor | 0.9 |
Learn Rate Drop Period | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Xiang, K.; Lu, Y.; Li, M.; Liu, H.; Chen, L.; Chen, X.; Abbas, H. Unlocking the Secrets of Corn: Physiological Responses and Rapid Forecasting in Varied Drought Stress Environments. Remote Sens. 2024, 16, 4302. https://doi.org/10.3390/rs16224302
Song W, Xiang K, Lu Y, Li M, Liu H, Chen L, Chen X, Abbas H. Unlocking the Secrets of Corn: Physiological Responses and Rapid Forecasting in Varied Drought Stress Environments. Remote Sensing. 2024; 16(22):4302. https://doi.org/10.3390/rs16224302
Chicago/Turabian StyleSong, Wenlong, Kaizheng Xiang, Yizhu Lu, Mengyi Li, Hongjie Liu, Long Chen, Xiuhua Chen, and Haider Abbas. 2024. "Unlocking the Secrets of Corn: Physiological Responses and Rapid Forecasting in Varied Drought Stress Environments" Remote Sensing 16, no. 22: 4302. https://doi.org/10.3390/rs16224302
APA StyleSong, W., Xiang, K., Lu, Y., Li, M., Liu, H., Chen, L., Chen, X., & Abbas, H. (2024). Unlocking the Secrets of Corn: Physiological Responses and Rapid Forecasting in Varied Drought Stress Environments. Remote Sensing, 16(22), 4302. https://doi.org/10.3390/rs16224302