FA-HRNet: A New Fusion Attention Approach for Vegetation Semantic Segmentation and Analysis
Abstract
:1. Introduction
- An improved Spatial Attention Module and Channel Attention Module are developed and fused for comprehensive extraction of vegetation features from remote sensing images.
- An enhanced multi-level upsampling module is proposed, which is better suited for segmenting and achieving semantic information from high-resolution vegetation images.
- In high-resolution remote sensing imagery, the method achieves an accuracy of 73.81%, surpassing the original model by 2.17%, in terms of vegetation segmentation.
2. Related Works
2.1. Unsupervised Learning-Based Segmentation Methods
2.2. Traditional Supervised Learning-Based Segmentation Methods
2.3. Deep-Learning-Based Segmentation Methods
3. The Method
3.1. Subject Network
3.2. ASA Module
3.3. RCA Module
3.4. Multi-Level Upsampling Module
4. Experimental Setting
4.1. Datasets
4.2. Evaluation Metrics
4.3. Parameter Sensitivity Analysis
5. Results and Analysis
5.1. Analysis of Ablation Experiments
5.2. Comparison of Semantic Segmentation Models
5.3. Application of Vegetation Coverage Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2020, 85, 1529–1543. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, Y.; Jiang, R.; Yang, X.; Zhang, L. Satellite image cloud automatic annotator with uncertainty estimation. Fire 2024, 7, 212. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. Int. J. Appl. Earth Obs. Geoinform. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Kamiyama, M.; Taguchi, A. Color conversion formula with saturation correction from HSI color space to RGB color space. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2021, E104A, 1000–1005. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of urban vegetation with high-resolution remote sensing: A Review. Remote Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- Bradter, U.; O’Connell, J.; Kunin, W.E.; Boffey, C.W.; Ellis, R.J.; Benton, T.G. Classifying grass-dominated habitats from remotely sensed data: The influence of spectral resolution, acquisition time and the vegetation classification system on accuracy and thematic resolution. Sci. Total. Environ. 2020, 711, 134584. [Google Scholar] [CrossRef]
- Prakash, N.; Manconi, A.; Loew, S. Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, H.; Zhang, Z.; Ye, Q. Unsupervised deep triplet hashing with pseudo triplets for scalable image retrieval. Multimedia Tools Appl. 2020, 79, 35253–35274. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Ye, Q.; Zhang, Z.; Yang, W. Learning discriminative feature via a generic auxiliary distribution for unsupervised domain adaptation. Int. J. Mach. Learn. Cybern. 2022, 13, 175–185. [Google Scholar] [CrossRef]
- Huang, X.; Jensen, J.R. A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data. Photogramm. Eng. Remote Sens. 1997, 63, 1185–1193. [Google Scholar]
- Nath, S.S.; Mishra, G.; Kar, J.; Chakraborty, S.; Dey, N. A survey of image classification methods and techniques. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari District, India, 10–11 July 2014; pp. 554–557. [Google Scholar]
- Zhu, L.; Ren, R.; Chen, D.; Song, A.; Liu, J.; Ye, N.; Yang, Y. Feel the inside: A haptic interface for navigating stress distribution inside objects. Vis. Comput. 2020, 36, 2445–2456. [Google Scholar] [CrossRef]
- Kurita, T. Principal component analysis (PCA). In Computer Vision: A Reference Guide; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–4. [Google Scholar]
- Blundell, R.; Bond, S.; Windmeijer, F. Estimation in dynamic panel data models: Improving on the performance of the standard GMM estimator. Nonstationary Panels Panel Cointegration Dyn. Panels 2001, 15, 53–91. [Google Scholar]
- Lei, T.; Jia, X.; Zhang, Y.; Liu, S.; Meng, H.; Nandi, A.K. Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans. Fuzzy Syst. 2018, 27, 1753–1766. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Shi, C.; Benediktsson, J.A.; Du, H. Novel land cover change detection method based on k-means clustering and adaptive majority voting using bitemporal remote sensing images. IEEE Access 2019, 7, 34425–34437. [Google Scholar] [CrossRef]
- Ye, Q.; Huang, P.; Zhang, Z.; Zheng, Y.; Fu, L.; Yang, W. Multiview learning with robust double-sided twin SVM. IEEE Trans. Cybern. 2021, 52, 12745–12758. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A Review of remote sensing image classification techniques: The role of spatio-contextual Information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Wang, C.; Ye, Q.; Luo, P.; Ye, N.; Fu, L. Robust capped L1-norm twin support vector machine. Neural Netw. 2019, 114, 47–59. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zhang, L.; Fan, X.; Ye, Q.; Fu, L. Individual tree segmentation and tree-counting using supervised clustering. Comput. Electron. Agric. 2023, 205, 107629. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Qian, M.; Xia, M.; Xu, Y.; Li, C. Land use/land cover recognition in arid zone using A multi-dimensional multi-grained residual Forest. Comput. Geosci. 2020, 144, 104557. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Linhui, L.; Weipeng, J.; Huihui, W. Extracting the forest type from remote sensing images by random forest. IEEE Sens. J. 2020, 21, 17447–17454. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.; Liu, M.; Zhang, D. A survey on deep learning for neuroimaging-based brain disorder analysis. Front. Neurosci. 2020, 14, 779. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Tjahjadi, T. Fusing dynamic deep learned features and handcrafted features for facial expression recognition. J. Vis. Commun. Image Represent. 2019, 65, 102659. [Google Scholar] [CrossRef]
- Gao, D.; Ou, L.; Liu, Y.; Yang, Q.; Wang, H. DeepSpoof: Deep reinforcement learning-based spoofing attack in cross-technology multimedia communication. IEEE Trans. Multimedia 2024, 1–13. [Google Scholar] [CrossRef]
- Fan, X.; Luo, P.; Mu, Y.; Zhou, R.; Tjahjadi, T.; Ren, Y. Leaf image based plant disease identification using transfer learning and feature fusion. Comput. Electron. Agric. 2022, 196, 106892. [Google Scholar] [CrossRef]
- Gao, D.; Wang, H.; Guo, X.; Wang, L.; Gui, G.; Wang, W.; Yin, Z.; Wang, S.; Liu, Y.; He, T. Federated learning based on CTC for heterogeneous internet of things. IEEE Internet Things J. 2023, 10, 22673–22685. [Google Scholar] [CrossRef]
- Yu, T.; Hu, C.; Xie, Y.; Liu, J.; Li, P. Mature pomegranate fruit detection and location combining improved F-PointNet with 3D point cloud clustering in orchard. Comput. Electron. Agric. 2022, 200, 107233. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, W.; Cao, X.; Wang, C.; Wu, D.; Yang, Y.; Ye, N. TA-CNN: Two-way attention models in deep convolutional neural network for plant recognition. Neurocomputing 2019, 365, 191–200. [Google Scholar] [CrossRef]
- Liu, X.; Hu, C.; Li, P. Automatic segmentation of overlapped poplar seedling leaves combining Mask R-CNN and DBSCAN. Comput. Electron. Agric. 2020, 178, 105753. [Google Scholar] [CrossRef]
- Lu, C.; Xia, M.; Lin, H. Multi-scale strip pooling feature aggregation network for cloud and cloud shadow segmentation. Neural Comput. Appl. 2022, 34, 6149–6162. [Google Scholar] [CrossRef]
- Ahmed, K.; Torresani, L. Connectivity learning in multi-branch networks. arXiv 2017, arXiv:1709.09582. [Google Scholar]
- Mahendra, H.N.; Mallikarjunaswamy, S.; Subramoniam, S.R. An assessment of vegetation cover of Mysuru City, Karnataka State, India, using deep convolutional neural networks. Environ. Monit. Assess. 2023, 195, 1–20. [Google Scholar] [CrossRef]
- Liu, M.; Fu, B.; Xie, S.; He, H.; Lan, F.; Li, Y.; Lou, P.; Fan, D. Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm. Ecol. Indic. 2021, 125, 107562. [Google Scholar] [CrossRef]
- Rong, Q.; Hu, C.; Hu, X.; Xu, M. Picking point recognition for ripe tomatoes using semantic segmentation and morphological processing. Comput. Electron. Agric. 2023, 210, 107923. [Google Scholar] [CrossRef]
- Ferchichi, A.; Ben Abbes, A.; Barra, V.; Farah, I.R. Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review. Ecol. Inform. 2022, 68, 101552. [Google Scholar] [CrossRef]
- Che, Z.; Shen, L.; Huo, L.; Hu, C.; Wang, Y.; Lu, Y.; Bi, F. MAFF-HRNet: Multi-attention feature fusion HRNet for building segmentation in remote sensing images. Remote Sens. 2023, 15, 1382. [Google Scholar] [CrossRef]
- Li, L.; Tian, T.; Li, H.; Wang, L. SE-HRNet: A deep high-resolution network with attention for remote sensing scene classification. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Virtual, 26 September–2 October 2020; pp. 533–536. [Google Scholar]
- Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the design of spatial attention in vision transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 9355–9366. [Google Scholar]
- Jiang, S.; Lu, M.; Hu, K.; Wu, J.; Li, Y.; Weng, L.; Xia, M.; Lin, H. Personalized federated learning based on multi-head attention algorithm. Int. J. Mach. Learn. Cybern. 2023, 14, 3783–3798. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 14–19 June 2020. [Google Scholar]
- Qiao, Z.; Wang, K.; Xia, M.; Xu, Y.; Liu, W.; Weng, L. Multi-scale residual network for energy disaggregation. Int. J. Sens. Networks 2019, 30, 172. [Google Scholar] [CrossRef]
- Yang, L.; Hong, S. Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MA, USA, 17–23 July 2022. [Google Scholar]
- Wang, J.; Zheng, Z.; Ma, A.; Lu, X.; Zhong, Y. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation. arXiv 2021, arXiv:2110.08733. [Google Scholar]
- Nanjing City Greening and Horticulture Bureau. Nanjing City Forestry and Parks Bureau Announces Release of Related Data on Forest Coverage Rate and Green Space Ratio in Nanjing City. 15 May 2024. Available online: https://ylj.nanjing.gov.cn/njslhylj/202405/t20240515_4666645.html (accessed on 13 September 2024).
- Jiangsu Forestry Bureau. Dongtai Huanghai National Forest Park: Transforming Saline-Alkaline Land into the Largest Plain Forest Along the East Coast. 25 May 2021. Available online: https://lyj.jiangsu.gov.cn/art/2021/5/24/art_7085_9821002.html (accessed on 14 September 2024).
NetWork | Multistage Upsampling | ASA | RCA | Mean Intersection Over/% | Pixel Accuracy/% |
---|---|---|---|---|---|
A | × | × | × | 71.64 | 85.06 |
B | × | √ | × | 72.33 | 87.60 |
C | × | × | √ | 72.59 | 86.73 |
D | × | √ | √ | 73.72 | 89.82 |
E | √ | × | × | 71.88 | 85.65 |
F | √ | √ | √ | 73.81 | 89.91 |
NetWork | Mean Intersection Over Union/% | Pixel Accuracy/% | F1-Score/% |
---|---|---|---|
FA-HRNet | 73.81 | 89.91 | 85.27 |
HRNet | 71.64 | 85.06 | 82.33 |
U-Net | 68.42 | 82.21 | 83.10 |
SegNet | 63.97 | 78.88 | 77.94 |
DeepLabV3 | 62.33 | 73.12 | 69.23 |
DeepLabV3+ | 65.67 | 79.85 | 74.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Wu, D.; Wang, L.; Xu, S. FA-HRNet: A New Fusion Attention Approach for Vegetation Semantic Segmentation and Analysis. Remote Sens. 2024, 16, 4194. https://doi.org/10.3390/rs16224194
He B, Wu D, Wang L, Xu S. FA-HRNet: A New Fusion Attention Approach for Vegetation Semantic Segmentation and Analysis. Remote Sensing. 2024; 16(22):4194. https://doi.org/10.3390/rs16224194
Chicago/Turabian StyleHe, Bingnan, Dongyang Wu, Li Wang, and Sheng Xu. 2024. "FA-HRNet: A New Fusion Attention Approach for Vegetation Semantic Segmentation and Analysis" Remote Sensing 16, no. 22: 4194. https://doi.org/10.3390/rs16224194
APA StyleHe, B., Wu, D., Wang, L., & Xu, S. (2024). FA-HRNet: A New Fusion Attention Approach for Vegetation Semantic Segmentation and Analysis. Remote Sensing, 16(22), 4194. https://doi.org/10.3390/rs16224194