Observed Changes and Projected Risks of Hot–Dry/Hot–Wet Compound Events in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Meteorological Data
2.2.2. GCMs Data
2.2.3. POP and GDP Data
2.3. Methods
2.3.1. Definitions of Drought, Heatwave, and Extreme Precipitation
- (1)
- Construction of the DMI
- (2)
- Construction of the HMI
- (3)
- Construction of the PMI
2.3.2. Definition of CDHE and CHPE
2.3.3. Delta Downscaling and Simulation Assessment
2.3.4. Evaluation of POP and GDP Exposures to Compound Events
3. Results
3.1. Observed Changes in CDHEs and CHPEs
3.2. Projected Variations in CDHEs and CHPEs
3.3. Future POP and GDP Exposures to Compound Events
4. Discussion
5. Conclusions
- (1)
- Historically, the frequency of CDHEs was higher than that of CHPEs, with means of 0.89 and 0.59 events/year, respectively. The CDHEs had the highest frequency in the PRB and the CHPEs had the highest one in the HURB. The spatial distributions of the two compound events were complementary. Both compound events occurred most frequently in July.
- (2)
- The annual mean frequency of the CDHEs will decrease under the SSP1-2.6 scenarios compared with the historical period, but the intensity of the CDHEs will increase. In various scenarios, the occurrence of the CHPEs will be more frequent than that of the CDHEs, with the highest values located in the HRB (CDHEs and CHPEs) and PRB (CDHEs). Under the SSP5-8.5 scenario, there will be a significant increase in May and September compared with the historical period.
- (3)
- Historically, both the CDHEs and CHPEs had the highest average annual frequencies at the mild level. The CDHEs occurred primarily in the HRB, HURB, western PRB, and northwestern IRB, while the CHPEs occurred primarily in the southern IRB, HRB, and HURB. All levels of the CDHEs and CHPEs were dominated by increasing trends. In the future scenarios, the average annual frequency of the CDHEs at the severe level will be the highest, but it will be the highest for the CHPEs at the extreme level. In the SSP5-8.5 scenario, there will be a significant increase, especially after 2051.
- (4)
- The POP and GDP exposures of the CDHEs and CHPEs will be primarily concentrated in the coastal regions of China. Under the SSP2-4.5 scenario, the CDHEs will exhibit the highest POP exposure, while the CHPEs under the SSP5-8.5 scenario will display the highest POP exposure.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- IPCC. AR6 Synthesis Report: Climate Change 2023; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [Google Scholar]
- Kunkel, K.E.; Easterling, D.R.; Redmond, K.; Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 2003, 30, 307–336. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Singh, V.P.; Xiao, M. Spatio-temporal relations between temperature and precipitation regimes: Implications for temperature-induced changes in the hydrological cycle. Glob. Planet. Chang. 2013, 111, 57–76. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Sci. Total Environ. 2018, 643, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.J.; Dokken, K.L.; Ebi, M.D.; Mastrandrea, K.J.; Mach, G.K.; Plattner, S.K.; Allen, M.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Leonard, M.; Westra, S.; Phatak, A.; Lambert, M.; van den Hurk, B.; McInnes, K.; Risbey, J.; Schuster, S.; Jakob, D.; Stafford-Smith, M. A compound event framework for understanding extreme impacts. Wires. Clim. Chang. 2014, 5, 113–128. [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Wang, H.; Zhou, B.; Li, H.; Xue, R.; Duan, M.; Luo, X.; Ai, W. Anthropogenic impact on the severity of compound extreme high temperature and drought/rain events in China. Npj Clim. Atmos. Sci. 2023, 6, 79. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, M.; Gao, S.; Chen, W.; Hari, V.; Khouakhi, A. Compound Hydrometeorological Extremes: Drivers, Mechanisms and Methods. Front. Earth Sci. 2021, 9, 673495. [Google Scholar] [CrossRef]
- Bevacqua, E.; Zappa, G.; Lehner, F.; Zscheischler, J. Precipitation trends determine future occurrences of compound hot-dry events. Nat. Clim. Chang. 2022, 12, 350–355. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Chen, Y.; Ouyang, L.; Li, Y.; Sun, F.; Liu, Y.; Zhu, J. Drought-heatwave compound events are stronger in drylands. Weather Clim. Extrem. 2023, 42, 100632. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Yin, J.; Slater, L.J.; Wang, H.; Guo, Q.; Feng, M.; Qin, H.; Zhao, T. Global increases in compound flood-hot extreme hazards under climate warming. Geophys. Res. Lett. 2022, 49, e2022GL097726. [Google Scholar] [CrossRef]
- Vogel, M.M.; Hauser, M.; Seneviratne, S.I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 2020, 15, 094021. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G. Deadly Compound Heat Stress-Flooding Hazard Across the Central United States. Geophys. Res. Lett. 2020, 47, e2020GL089185. [Google Scholar] [CrossRef]
- Jha, S.; Gudmundsson, L.; Seneviratne, S.I. Partitioning the Uncertainties in Compound Hot and Dry Precipitation, Soil Moisture, and Runoff Extremes Projections in CMIP6. Earth’s Future 2022, 11, e2022EF003315. [Google Scholar] [CrossRef]
- Wang, A.; Tao, H.; Ding, G.; Zhang, B.; Huang, J.; Wu, Q. Global cropland exposure to extreme compound drought heatwave events under future climate change. Weather Clim. Extrem. 2023, 40, 100559. [Google Scholar] [CrossRef]
- Feng, S.; Wu, X.; Hao, Z.; Hao, Y.; Zhang, X.; Hao, F. A database for characteristics and variations of global compound dry and hot events. Weather Clim. Extrem. 2020, 30, 100299. [Google Scholar] [CrossRef]
- Ni, Y.; Qiu, B.; Miao, X.; Li, L.; Chen, J.; Tian, X.; Zhao, S.; Guo, W. Shift of soil moisture-temperature coupling exacerbated 2022 compound hot-dry event in eastern China. Environ. Res. Lett. 2024, 19, 014059. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 6–7. [Google Scholar] [CrossRef]
- Wang, R.; Lv, G.; Ning, L.; Yuan, L.; Li, L. Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons. Atmos. Res. 2021, 260, 105692. [Google Scholar] [CrossRef]
- You, J.; Wang, S.; Zhang, B.; Raymond, C.; Matthews, T. Growing Threats from Swings Between Hot and Wet Extremes in a Warmer World. Geophys. Res. Lett. 2023, 50, e2023GL104075. [Google Scholar] [CrossRef]
- Sauter, C.; White, C.J.; Fowler, H.J.; Westra, S. Temporally compounding heatwave–heavy rainfall events in Australia. Int. J. Climatol. 2023, 43, 1050–1061. [Google Scholar] [CrossRef]
- Min, S.; Jo, S.; Seong, M.; Kim, Y.; Son, S.; Byun, Y.; Lott, F.; Stott, P. Human Contribution to the 2020 Summer Successive Hot-Wet Extremes in South Korea. Bull. Am. Meteorol. Soc. 2022, 103, 90–97. [Google Scholar] [CrossRef]
- Kawase, H.; Imada, Y.; Tsuguti, H.; Nakaegawa, T.; Seino, N.; Murata, A.; Takayabu, L. The heavy rain event of July 2018 in Japan enhanced by historical warming. Bull. Am. Meteorol. Soc. 2020, 101, S109–S114. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, C.; Yeh, P.; Ju, J.; Zhong, L.; Wang, S.; Zhang, J. Anthropogenic climate change exacerbates the risk of successive flood-heat extremes: Multi-model global projections based on the Inter-Sectoral Impact Model Intercomparison Project. Sci. Total Environ. 2023, 889, 164274. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, K.P.; Mishra, A.K. How Unusual Is the 2022 European Compound Drought and Heatwave Event? Geophys. Res. Lett. 2023, 50, e2023GL105453. [Google Scholar] [CrossRef]
- Zhang, Q.; She, D.; Zhang, L.; Wang, G.; Chen, J.; Hao, Z. High Sensitivity of Compound Drought and Heatwave Events to Global Warming in the Future. Earth’s Future 2022, 10, e2022EF002833. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Slater, L.; Gu, L.; Pokhrel, Y.; Hanasaki, N.; Guo, S.; Xiong, L.; Schlenker, W. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain. 2023, 6, 259–272. [Google Scholar] [CrossRef]
- De Luca, P.; Donat, M.G. Projected changes in hot, dry, and compound hot-dry extremes over global land regions. Geophys. Res. Lett. 2022, 50, e2022GL102493. [Google Scholar] [CrossRef]
- Wu, H.; Su, X.; Singh, V.P. Increasing risks of future compound climate extremes with warming over global land masses. Earth’s Future 2023, 11, e2022EF003466. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.; Zhang, Q.; Hu, C.; Wang, G.; She, D.; Chen, J. Global increase in future compound heat stress-heavy precipitation hazards and associated socio-ecosystem risks. Npj Clim. Atmos. Sci. 2024, 7, 33. [Google Scholar] [CrossRef]
- Hargreaves, J.C. Skill and uncertainty in climate models. Wires. Clim. Chang. 2010, 1, 556–564. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Gao, Z.; Chen, K.; Chou, J. Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China. Atmos. Ocean. Sci. Lett. 2020, 13, 589–597. [Google Scholar] [CrossRef]
- Lun, Y.; Liu, L.; Cheng, L.; Li, X.; Li, H.; Xu, Z. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 2021, 41, 3994–4018. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The Performance of CMIP6 Versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. J. Geophys. Res.-Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Kim, M.; Yu, D.; Oh, J.; Byun, Y.; Boo, K.; Chung, I.; Park, J.; Park, D.; Min, S.; Sung, H. Performance Evaluation of CMIP5 and CMIP6 Models on Heatwaves in Korea and Associated Teleconnection Patterns. J. Geophys. Res. Atmos. 2020, 115, e2020JD032583. [Google Scholar] [CrossRef]
- Abdelmoaty, H.M.; Papalexiou, S.M.; Rajulapati, C.R.; AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: A global investigation. Earth’s Future 2021, 9, e2021EF002196. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Wang, H. Future changes in precipitation extremes across China based on CMIP6 models. Int. J. Climatol. 2022, 42, 635–651. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, M.J. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Kim, Y.; Min, S.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 2020, 29, 100296. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, P.; Zhang, Q.; Zou, Y.; Lv, Y. Characterization and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble. Remote Sens. 2022, 14, 1097. [Google Scholar] [CrossRef]
- Liang, X.Z. Extreme rainfall slows the global economy. Nature 2022, 601, 193–194. [Google Scholar] [CrossRef]
- Bian, Y.; Sun, P.; Zhang, Q.; Luo, M.; Liu, Y. Amplification of non-stationary drought to heatwave duration and intensity in eastern China: Spatiotemporal pattern and causes. J. Hydrol. 2022, 612, 128154. [Google Scholar] [CrossRef]
- Shi, Z.; Jia, G.; Zhou, Y.; Xu, X.; Jiang, Y. Amplified intensity and duration of heatwaves by concurrent droughts in China. Atmos. Res. 2021, 261, 105743. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Guo, B.; Ji, M.; Xu, Y. Compound droughts and heat waves over the Huai River basin of China: From a perspective of the magnitude index. J. Hydrometeorol. 2021, 22, 3107–3119. [Google Scholar] [CrossRef]
- Yu, Y.; You, Q.; Zuo, Z.; Zhang, Y.; Cai, Z.; Li, W.; Jiang, Z.; Ullah, S.; Tang, X.; Zhang, R.; et al. Compound climate extremes in China: Trends, causes, and projections. Atmos. Res. 2023, 286, 106675. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, X.; Qiu, R.; Liu, Z.; Yang, Z. Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model. Agric. Water Manag. 2022, 273, 107618. [Google Scholar] [CrossRef]
- Wu, S.; Chan, T.; Zhang, W.; Ning, G.; Wang, P.; Tong, X.; Xu, F.; Tian, H.; Han, Y.; Zhao, Y.; et al. Increasing Compound Heat and Precipitation Extremes Elevated by Urbanization in South China. Front. Earth Sci. 2021, 9, 636777. [Google Scholar] [CrossRef]
- Ren, J.; Huang, G.; Zhou, X.; Li, Y. Downscaled compound heatwave and heavy-precipitation analyses for Guangdong, China in the twenty-first century. Clim. Dyn. 2023, 61, 2885–2905. [Google Scholar] [CrossRef]
- Sun, P.; Zou, Y.; Yao, R.; Ma, Z.; Bian, Y.; Ge, C.; Lv, Y. Compound and successive events of extreme precipitation and extreme runoff under heatwaves based on CMIP6 models. Sci. Total Environ. 2023, 878, 162980. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Hao, Z.; Feng, S.; Zhang, X.; Hao, F. Increase in compound dry-warm and wet-warm events under global warming in CMIP6 models. Glob. Planet. Chang. 2022, 210, 103773. [Google Scholar] [CrossRef]
- Zhao, C.; Feng, Y.; Wang, T.; Liu, W.; Wang, H.; Liu, Y.; Sun, F. Projected changes in socioeconomic exposure to compound hot–dry/hot–wet days in China under CMIP6 forcing scenarios. Theor. Appl. Climatol. 2023, 154, 601–612. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhang, Y.; Xia, Y. Rehabilitating China’s Largest Inland River. Conserv. Biol. 2009, 23, 531–536. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Hong, Y.; Yu, J.; Pan, Y.; Chen, Z.; Saharia, M. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 6843–6858. [Google Scholar] [CrossRef]
- Ma, M.; Ren, L.; Singh, V.P.; Yuan, F.; Chen, L.; Yang, X.; Liu, Y. Hydrologic model-based Palmer indices for drought characterization in the Yellow River basin, China. Stoch. Environ. Res. Risk A 2016, 30, 1401–1420. [Google Scholar] [CrossRef]
- Tan, J.; Xie, X.; Zuo, J.; Xing, X.; Liu, B.; Xia, Q.; Zhang, Y. Coupling random forest and inverse distance weighting to generate climate surfaces of precipitation and temperature with Multiple-Covariates. J. Hydrol. 2021, 598, 126270. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Wang, Y.; Huang, J.; Jing, C.; Gao, M.; Wang, G.; Lin, Q.; Jiang, S.; Liu, S.; et al. Gridded datasets for population and economy under Shared Socioeconomic Pathways. Sci. Data Bank 2022. [Google Scholar] [CrossRef]
- Huang, J.; Qin, D.; Jiang, T.; Wang, Y.; Feng, Z.; Zhai, J.; Cao, L.; Chao, Q.; Xu, X.; Wang, G.; et al. Effect of Fertility Policy Changes on the Population Structure and Economy of China: From the Perspective of the Shared Socioeconomic Pathways. Earth’s Future 2019, 7, 250–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Chen, C.; Shen, L.; Xiao, B. Substantial decrease in concurrent meteorological droughts and consecutive cold events in Huai River Basin, China. Int. J. Climatol. 2021, 41, 6065–6083. [Google Scholar] [CrossRef]
- Mitra, S.; Srivastava, S. Spatiotemporal variability of meteorological droughts in southeastern USA. Nat. Hazards 2017, 86, 1007–1037. [Google Scholar] [CrossRef]
- Labudová, L.; Labuda, M.; Takáč, J. Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland. Theor. Appl. Climatol. 2017, 128, 491–506. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Wang, D.; Huo, Z.; Miao, P.; Tian, X. Comparison of Machine Learning Models to Predict Lake Area in an Arid Area. Remote Sens. 2023, 15, 4153. [Google Scholar] [CrossRef]
- Xu, L.; Wang, A.; Yu, W.; Yang, S. Hot spots of extreme precipitation change under 1.5 and 2 °C global warming scenarios. Weather Clim. Extrem. 2021, 33, 100357. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A Comparison of Delta Change and Downscaled GCM Scenarios For Three Mountainous Basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Dai, C.; Qin, X.S.; Lu, W.T.; Zang, H.K. A multimodel assessment of drought characteristics and risks over the Huang-Huai-Hai River basin, China, under climate change. Theor. Appl. Climatol. 2020, 141, 601–613. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100. Theor. Appl. Climatol. 2021, 145, 79–94. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Increased population exposure to extreme droughts in China due to 0.5 °C of additional warming. Environ. Res. Lett. 2019, 14, 064011. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Amplifying effect of ENSO on heat waves in China. Clim. Dyn. 2018, 52, 3277–3289. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Hao, F.; Zhang, X. Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci. Total Environ. 2019, 663, 731–737. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Q.; Singh, V.P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol. 2015, 35, 3556–3567. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, T. Oscillation characteristics of summer precipitation in the Huaihe River valley and relevant climate background. Sci. China Earth Sci. 2010, 53, 301–316. [Google Scholar] [CrossRef]
- Liao, X.; Xu, W.; Zhang, J.; Li, Y.; Tian, Y. Global exposure to rainstorms and the contribution rates of climate change and population change. Sci. Total Environ. 2019, 663, 644–653. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef]
- Gregory, J.M.; Church, J.A.; Boer, G.J.; Dixon, K.W.; Flato, G.M.; Jackett, D.R.; Lowe, J.A.; O’Farrell, S.P.; Roeckner, E.; Russell, G.L.; et al. Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Clim. Dyn. 2001, 18, 225–240. [Google Scholar] [CrossRef]
- Feng, Z.; Leung, L.R.; Houze, R.A.; Hagos, S.; Hardin, J.; Yang, Q.; Han, B.; Fan, J. Structure and Evolution of Mesoscale Convective Systems: Sensitivity to Cloud Microphysics in Convection-Permitting Simulations Over the United States. J. Adv. Model. Earth Syst. 2018, 10, 1470–1494. [Google Scholar] [CrossRef]
- Ridder, N.N.; Pitman, A.J.; Westra, S.; Ukkola, A.; Do, H.; Bador, M.; Hirsch, A.L.; Evans, J.P.; Luca, A.D.; Zscheischler, J. Global hotspots for the occurrence of compound events. Nat. Commum. 2020, 11, 5956. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Ma, Z.; Zhang, Q.; Singh, V.P.; Xu, C. Modified drought severity index: Model improvement and its application in drought monitoring in China. J. Hydrol. 2022, 612, 128097. [Google Scholar] [CrossRef]
No. | Model | Country | Institution | Resolution |
---|---|---|---|---|
1 | ACCESS-CM2 | Australia | CSIRO-BOM | 1.88° × 1.25° |
2 | CanESM5 | Canada | CCCMA | 2.81° × 2.79° |
3 | CMCC-ESM2 | Italian | CMCC | 1.25° × 0.94° |
4 | EC-Earth3 | Europe | EC-Earth-Cons | 0.7° × 0.7° |
5 | FGOALS-g3 | China | CAS | 2.0° × 2.28° |
6 | GFDL-ESM4 | USA | GFDL | 1.25° × 1° |
7 | IPSL-CM6A-LR | France | IPSL | 2.5° × 1.27° |
8 | MIROC6 | Japan | JAMSTEC | 1.41° × 1.4° |
9 | MRI-ESM2-0 | Japan | MRI | 1.13° × 1.12° |
10 | NESM3 | China | NUIST | 1.88° × 1.86° |
11 | NorESM2-LM | Norway | NCC | 2.5° × 1.89° |
12 | TaiESM1 | China | AS-RCEC | 1.25° × 0.94° |
Mild | Moderate | Severe | Extreme | |
---|---|---|---|---|
CDHMI | (0, 1.19] | (1.19, 2.36] | (2.36, 5.8] | >5.8 |
CHPMI | (0, 2.56] | (2.56, 4.38] | (4.38, 10.36] | >10.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Song, X. Observed Changes and Projected Risks of Hot–Dry/Hot–Wet Compound Events in China. Remote Sens. 2024, 16, 4208. https://doi.org/10.3390/rs16224208
Zou Y, Song X. Observed Changes and Projected Risks of Hot–Dry/Hot–Wet Compound Events in China. Remote Sensing. 2024; 16(22):4208. https://doi.org/10.3390/rs16224208
Chicago/Turabian StyleZou, Yifan, and Xiaomeng Song. 2024. "Observed Changes and Projected Risks of Hot–Dry/Hot–Wet Compound Events in China" Remote Sensing 16, no. 22: 4208. https://doi.org/10.3390/rs16224208
APA StyleZou, Y., & Song, X. (2024). Observed Changes and Projected Risks of Hot–Dry/Hot–Wet Compound Events in China. Remote Sensing, 16(22), 4208. https://doi.org/10.3390/rs16224208