remotesensing-logo

Journal Browser

Journal Browser

Remote Sensing in Hydrometeorology and Natural Hazards

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing in Geology, Geomorphology and Hydrology".

Deadline for manuscript submissions: 31 January 2025 | Viewed by 1607

Special Issue Editors


E-Mail Website
Guest Editor
School of Geography and Toursim, Anhui Normal University, Wuhu 241002, China
Interests: remote sensing hydrology; climatic and hydrological extremes
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, China
Interests: remote sensing; machine learning; flash flood monitoring and simulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Geography and Toursim, Anhui Normal University, Wuhu 241002, China
Interests: remote sensing; extreme climate events; Geographic modeling; flood simulation

Special Issue Information

Dear Colleagues,

Hydrometeorology is essential for understanding the interactions between the atmosphere and terrestrial water systems. This understanding underpins the efforts to address the global challenges related to water resource management, climate change, and environmental sustainability. Moreover, as remote sensing data are extensively utilized across meteorology, hydrology, and disaster science, integrating remote sensing technologies into hydrometeorology is crucial for fostering sustainable water resource management and mitigating the impacts of climate change.

Although hydrometeorological extremes and natural disasters have significant social and economic impacts, the physical processes and underlying mechanisms driving these events remain poorly understood. Additionally, the social dynamics and consequences associated with natural disasters also require a thorough investigation and clear identification. Therefore, this Special Issue on “Remote Sensing in Hydrometeorology and Natural Hazards” aims to innovative the applications of remote sensing technologies within hydrometeorology and natural hazards. By presenting studies that utilize remote sensing for sustainable water management, climate resilience, and environmental conservation, this Issue aspires to enhance our understanding and ability to address critical global challenges. Hence, we invite researchers, practitioners, and policymakers to contribute their insights and findings, fostering collaboration and knowledge exchange to support a sustainable and resilient future.

Prof. Dr. Peng Sun
Dr. Linyao Dong
Dr. Rui Yao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • warming climate
  • remote sensing
  • hydrological cycle
  • hydrological hazards
  • hydrometeorology
  • climatic and hydrological extremes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2542 KiB  
Article
Flood Risk Analysis of Urban Agglomerations in the Yangtze River Basin Under Extreme Precipitation Based on Remote Sensing Technology
by Haichao Li, Dawen Yang, Zhenduo Zhu, Yanqi Wei, Yuliang Zhou, Hiroshi Ishidaira, Nii Amarquaye Commey and Han Cheng
Remote Sens. 2024, 16(22), 4289; https://doi.org/10.3390/rs16224289 - 17 Nov 2024
Viewed by 557
Abstract
Flooding is the most pervasive hydrological disaster globally. This study presents a comprehensive analysis of torrential rain and flood characteristics across three major urban agglomerations (CY, MRYR, and YRD) in the Yangtze River Basin from 1991 to 2020. Utilizing satellite-derived microwave SSM/I data [...] Read more.
Flooding is the most pervasive hydrological disaster globally. This study presents a comprehensive analysis of torrential rain and flood characteristics across three major urban agglomerations (CY, MRYR, and YRD) in the Yangtze River Basin from 1991 to 2020. Utilizing satellite-derived microwave SSM/I data and CHIRPS precipitation datasets, this study examines the impacts of urbanization and climate change on flood risk patterns. The results showed: (1) In 1998, the MRYR had the highest flood risk due to heavy rainfall and poor flood control, but by 2020, risk shifted to the CY with rapid urbanization and more rainfall, while the YRD maintained the lowest risk due to advanced flood control. (2) The relationship between impervious surface area and flood risk varied by region. The CY showed a negative correlation (−0.41), suggesting effective flood mitigation through topography and infrastructure; the MRYR had a slight positive correlation (0.12), indicating increased risks from urban expansion; and the YRD’s weak negative correlation (−0.18) reflected strong flood control systems. This research underscores the imperative of strategic urban planning and effective water resource management to mitigate future flood risks and contributes valuable insights to ongoing efforts in flood disaster prevention and control within the Yangtze River Basin. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

22 pages, 14747 KiB  
Article
Observed Changes and Projected Risks of Hot–Dry/Hot–Wet Compound Events in China
by Yifan Zou and Xiaomeng Song
Remote Sens. 2024, 16(22), 4208; https://doi.org/10.3390/rs16224208 - 12 Nov 2024
Viewed by 525
Abstract
Compound extreme events can cause serious impacts on both the natural environment and human beings. This work aimed to explore the changes in compound drought–heatwave and heatwave–extreme precipitation events (i.e., CDHEs and CHPEs) across China using daily-scale gauge-based meteorological observations, and to examine [...] Read more.
Compound extreme events can cause serious impacts on both the natural environment and human beings. This work aimed to explore the changes in compound drought–heatwave and heatwave–extreme precipitation events (i.e., CDHEs and CHPEs) across China using daily-scale gauge-based meteorological observations, and to examine their future projections and potential risks using the Coupled Model Intercomparison Project (CMIP6) under the shared socioeconomic pathway (SSP) scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5). The results show the following: (1) The frequencies of CDHEs and CHPEs across China showed a significant increasing trend from 1961 to 2020, with contrasting trends between the first half and second half of the period (i.e., a decrease from 1961 to 1990 and an increase from 1991 to 2020). Similar trends were observed for four intensity levels (i.e., mild, moderate, severe, and extreme) of CDHEs and CHPEs. (2) All the frequencies under three SSP scenarios will show increasing trends, especially under higher emission scenarios. Moreover, the projected intensities of CDHEs and CHPEs will gradually increase, especially for higher levels. (3) The exposure of the population (POP) and Gross Domestic Product (GDP) will be concentrated mainly in China’s coastal areas. The GDP exposures to the CDHEs and CHPEs will reach their highest values for SSP5-8.5, while the POP exposure will peak for SSP2-4.5 and SSP5-8.5, respectively. Our findings can offer scientific and technological support to actively mitigate future climate change risks. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

Back to TopTop