Comprehensive Analysis of BDS/GNSS Differential Code Bias and Compatibility Performance
Abstract
:1. Introduction
2. Methods and Data
2.1. DCB Estimation Method
2.2. Benchmark Uniformity
2.3. GNSS Signal Modulation
2.4. Converting DCB to OSB
3. Estimation of Satellite DCB
3.1. Experimental Data
3.2. BDS Satellite DCB Estimation Results
3.3. DCB Compatibility Analysis
4. Estimation of Receiver DCB
5. DCB Consistency Analysis
5.1. Comparison Results with Other Institutions
5.2. Analysis of OSB Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. Thesis, Astronomical Institute, University of Bern, Bern, Switzerland, 1999. [Google Scholar]
- Dolin, S.V. Application of Differential Code Biases in Multi-GNSS Measurements in Real-Time Precise Point Positioning. Gyroscopy Navig. 2022, 13, 276–282. [Google Scholar] [CrossRef]
- Sardon, E.; Rius, A.; Zarraoa, N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci. 1994, 29, 577–586. [Google Scholar] [CrossRef]
- Wilson, B.D.; Mannucci, A.J. Instrumental biases in ionospheric measurement derived from GPS data. In Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, USA, 22–24 September 1993; pp. 1343–1351. [Google Scholar]
- Odolinski, R.; Teunissen, P.J.G. Low-cost, high-precision, single frequency GPS–BDS RTK positioning. GPS Solut. 2017, 21, 1315–1330. [Google Scholar] [CrossRef]
- Long, T.; Zhang, X.; Xin, L.; Chen, Y. Estimation of Compass Satellite Differential Code Biases Using Combined GPS/Compass Observation. In Proceedings of the China Satellite Navigation Conference (CSNC 2012), Guanzhou, China, 15–19 May 2012; pp. 365–371. [Google Scholar]
- Li, M.; Yuan, Y.; Zhang, X.; Zha, J. A multi-frequency and multi-GNSS method for the retrieval of the ionospheric TEC and intraday variability of receiver DCBs. GPS Solut. 2020, 94, 102. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Prieto-Cerdeira, R.; Orús-Pérez, R.; Breeuwer, E.; Lucas-Rodriguez, R.; Falcone, M. Performance of the Galileo single-frequency ionospheric correction during in-orbit validation. GPS World 2014, 25, 53–58. [Google Scholar]
- Hong, C.K.; Grejner-Brzezinska, D.A.; Kwon, J.H. Efficient GPS receiver DCB estimation for ionosphere modeling using satellite-receiver geometry changes. Earth Planets Space 2008, 60, e25–e28. [Google Scholar] [CrossRef]
- Ciraolo, L.; Azpiicueta, F.; Brunini, C.; Meza, A.; Radicella, S. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Leandro, R.F.; Langley, R.B.; Santos, M.C. Estimation of P2-C2 Biases by Means of Precise Point Positioning. In Proceedings of the 63rd Annual Meeting of The Institute of Navigation, Cambridge, MA, USA, 23–25 April 2007; pp. 225–231. [Google Scholar]
- Li, H.; Xu, T.; Huang, S.; Wang, J. A new differential code bias (C1-P1) estimation method and its performance evaluation. GPS Solut. 2016, 20, 321–329. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, B.; Yuan, Y.; Wang, N. Multi-GNSS triple-frequency differential code bias (DCB) determination with precise point positioning (PPP). J. Geod. 2019, 93, 765–784. [Google Scholar] [CrossRef]
- Shi, C.; Fan, L.; Li, M. An enhanced algorithm to estimate BDS satellite’s differential code biases. J. Geod. 2016, 90, 161–177. [Google Scholar] [CrossRef]
- Fan, L.; Li, M.; Wang, C. BDS satellite’s differential code biases estimation based on uncombined precise point positioning with triple-frequency observable. Adv. Space Res. 2017, 59, 804–814. [Google Scholar] [CrossRef]
- Liu, A.; Li, Z.; Wang, N. Analysis of the short-term temporal variation of differential code bias in GNSS receiver. Measurement 2020, 153, 107448. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Q.; Dardanelli, G. A Review on Multi-GNSS for Earth Observation and Emerging Applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Mylnikova, A.A.; Kunitsyn, V.E.; Padokhin, A.M. Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere. Geomagn. Aeron. 2015, 55, 763–769. [Google Scholar] [CrossRef]
- Mylnikova, A.A.; Yasyukevich, Y.V.; Kunitsyn, V.E. Variability of GPS/GLONASS differential code biases. Results Phys. 2015, 5, 9–10. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Y.; Wang, N.; Li, Z.; Li, Y.; Huo, X. Estimation and analysis of Galileo differential code biases. J. Geod. 2016, 91, 279–293. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps. J. Inst. Navig. 2014, 61, 191–201. [Google Scholar] [CrossRef]
- Shi, Q.; Jin, S. Variation Characteristics of Multi-Channel Differential Code Biases from New BDS-3 Signal Observations. Remote Sens. 2022, 14, 594. [Google Scholar] [CrossRef]
- Mi, X.; Sheng, C.; El-Mowafy, A.; Zhang, B. Characteristics of receiver-related biases between BDS-3 and BDS-2 for five frequencies including inter-system biases, differential code biases, and differential phase biases. GPS Solut. 2021, 25, 113. [Google Scholar] [CrossRef]
- Zheng, F. Accounting for biases between BDS-3 and BDS-2 overlap B1I/B3I signals in BeiDou global ionospheric modeling and DCB determination. Adv. Space Res. 2022, 69, 3677–3691. [Google Scholar] [CrossRef]
- Jin, S.; Jin, R.; Li, D. Assessment of BDS differential code bias variations from multi-GNSS network observations. Ann. Geophys. 2016, 34, 259–269. [Google Scholar] [CrossRef]
- Wijaya, D.D.; Utama, A.K.; Kuntjoro, W. A two-step estimation of GPS differential code biases and local ionospheric TEC based on orthogonal transformation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5802214. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, S.; Ye, X. A Novel Method to Estimate Multi-GNSS Differential Code Bias without Using Ionospheric Function Model and Global Ionosphere Map. Remote Sens. 2022, 14, 2002. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, J.; Feng, H. Ionosphere Total Electron Content Modeling and Multi-Type Differential Code Bias Estimation Using Multi-Mode and Multi-Frequency Global Navigation Satellite System Observations. Remote Sens. 2023, 15, 4607. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Z.; He, X. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 425–432. [Google Scholar]
- Liu, Y.; Zhang, Z.; OU, M. Long-term Variation of Differential Code Biases of Ionospheric TEC Monitor Based on Hardward Signal Simulator. J. Space Sci. 2021, 41, 499–504. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, Z.; Gao, Y.; Yu, W. Understanding long-term variations in GPS differential code biases. GPS Solut. 2020, 24, 118. [Google Scholar] [CrossRef]
- Bao, S.; Liu, H.; Xu, L.; Gong, X. Analysis of satellite-induced factors affecting the accuracy of the BDS satellite differential code bias. GPS Solut. 2017, 21, 905–916. [Google Scholar]
- Cui, J.; Chen, J.; Wang, B.; Yu, C. Characteristic Analysis of Satellite DCB Products Provided by CAS and DLR. Prog. Astron. 2020, 40, 429–440. [Google Scholar]
- Wang, Q.; Jin, S.; Hu, Y. Epoch-by-epoch estimation and analysis of BeiDou Navigation Satellite System (BDS) receiver differential code biases with the additional BDS-3 observations. Ann. Geophys. 2020, 38, 1115–1122. [Google Scholar] [CrossRef]
- Gu, J.; Song, C.; Tian, K. Precision Single Point Positioning Accuracy Analysis of BDS-3 New Frequencies Based on OSB Correction. Geod. Geodyn. 2023, 43, 18–22. [Google Scholar]
- Wang, N.; Li, Z.; Duan, B.; Hugentobler, U.; Wang, L. GPS and GLONASS observable-specific code bias estimation: Comparison of solutions from the IGS and MGEX networks. J. Geod. 2020, 94, 1–15. [Google Scholar] [CrossRef]
- Deng, Y.; Guo, F.; Ren, X.; Ma, F.; Zhang, X. Estimation and analysis of multi-GNSS observable-specific code biases. GPS Solut. 2021, 25, 100. [Google Scholar] [CrossRef]
- Montenbruck, O.; Peter, S.; Jean-Marie, S. Data+ pilot biases in modern GNSS signals. GPS Solut. 2023, 27, 112. [Google Scholar] [CrossRef]
- Su, K.; Jiao, G. Estimation of BDS pseudorange biases with high temporal resolution: Feasibility, affecting factors, and necessity. Satell. Navig. 2023, 4, 17. [Google Scholar] [CrossRef]
- Su, K.; Jiao, G. Two modified multi-frequency GNSS approaches to estimate the pseudorange observable-specific signal bias for the CDMA and FDMA models. GPS Solut. 2023, 27, 83. [Google Scholar] [CrossRef]
- Ren, X.; Chen, J.; Li, X. Multi-GNSS contributions to differential code biases determination and regional ionospheric modeling in China. Adv. Space Res. 2020, 65, 221–234. [Google Scholar] [CrossRef]
- Jin, R.; Jin, S.; Feng, G. M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut. 2012, 16, 541–548. [Google Scholar] [CrossRef]
- Brunini, C.; Azpilicueta, F. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J. Geod. 2010, 84, 293–304. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Gao, Y. Estimation and Analysis of GNSS Differential Code Biases (DCBs) Using a Multi-Spacing Software Receiver. Sensors 2021, 21, 443. [Google Scholar] [CrossRef] [PubMed]
- Januszewski, J. The Problem of Compatibility and Interoperability of Satellite Navigation Systems in Computation of User’s Position. Artif. Satell. 2011, 46, 93–102. [Google Scholar] [CrossRef]
- Sarkar, S. A study on compatibility and interoperability among multi-GNSS. Aeronaut. Aerosp. Open Access J. 2021, 5, 25–31. [Google Scholar] [CrossRef]
- Sun, Y. Optimal parameter design of continuous phase modulation for future GNSS signals. IEEE Access 2021, 9, 58487–58502. [Google Scholar] [CrossRef]
- Yang, J. Availability analysis of GNSS signals above GNSSs constellation. J. Navig. 2021, 74, 446–466. [Google Scholar] [CrossRef]
- Altman, D.G.; Machin, D.; Bryant, T.N.; Gardner, M.J. Statistics with Confidence, 2nd ed.; BMJ Books: London, UK, 2000; pp. 28–31. [Google Scholar]
- Zhang, Q.; Zhu, Y.; Chen, Z. An In-Depth Assessment of the New BDS-3 B1C and B2a Signals. Remote Sens. 2021, 13, 788. [Google Scholar] [CrossRef]
- Jiao, G.; Song, S.; Jiao, W. Improving BDS-2 and BDS-3 joint precise point positioning with time delay bias estimation. Meas. Sci. Technol. 2019, 31, 025001. [Google Scholar] [CrossRef]
Sys | Signal | Frequency | Bandwidth | Modulation |
---|---|---|---|---|
GPS | L1 C/A | 1575.42 | 30.69 | BPSK (1) |
L1C | BOC (1, 1) + TMBOC (6, 1, 4/33) | |||
L1P | BPSK (10) | |||
L1M | BOC (10, 5) | |||
L2C | 1227.6 | 30.69 | BPSK (1) | |
L2P | BPSK (10) | |||
L2M | BOC (10, 5) | |||
L5 | 1176.45 | 24 | QPSK (10) | |
GLONASS | L1OF | 1602 + k × 0.5625 | 0.511 | FDMA and BPSK |
L2OF | 1246 + k × 0.4375 | FDMA and BPSK | ||
Galileo | E1 | 1575.42 | 24.552 | MBOC (6, 1, 1/11) |
E5 | 1191.795 | 51.15 | AltBOC (15, 10) | |
E5a | 1176.45 | 20.46 | AltBOC (15, 10) | |
E5b | 1207.14 | 20.46 | AltBOC (15, 10) | |
E6 | 1278.75 | 40.92 | BPSK (5) | |
BDS | B1I | 1561.098 | 4.092 | BPSK (2) |
B1C | 1575.42 | 32.736 | Data BOC (1, 1) | |
Pilot QMBOC (6, 1, 4/33) | ||||
B2a | 1176.45 | 20.46 | Data BPSK (10) | |
Pilot BPSK (10) | ||||
B2b | 1207.14 | 20.46 | BPSK (10) | |
B3I | 1268.520 | 20.46 | BPSK (10) |
Constellation | Satellite PRN | DCB Type |
---|---|---|
BDS-2 | C01~C14, C16 | C2I–C7I |
C2I–C6I | ||
BDS-3 | C19~C30, C32~C46, C59~C61 | C2I–C6I |
C19~C30, C32~C46 | C1P–C5P, C1X–C5X, C2I–C1P, C2I–C1X, C2I–C5P, C2I–C5X, C2I–C7Z, C2I–C8X, C5X–C7Z, C5X–C8X |
Clock Type | PRN | DCB Type | Mean STD |
---|---|---|---|
Rubidium atomic clock | C19, C20, C21, C22, C23, C24, C32, C33, C36, C37, C41, C42 | C2I–C1P | 0.132 |
C2I–C1X | 0.204 | ||
C2I–C5P | 1.341 | ||
C2I–C5X | 1.474 | ||
C2I–C7Z | 1.378 | ||
C2I–C8X | 1.799 | ||
hydrogen atomic clock | C25, C26, C27, C28, C29, C30, C34, C35, C38, C39, C40, C43, C44 | C2I–C1P | 0.102 |
C2I–C1X | 0.092 | ||
C2I–C5P | 1.415 | ||
C2I–C5X | 2.642 | ||
C2I–C7Z | 1.784 | ||
C2I–C8X | 2.865 |
Signal Frequency | Constellation | Code Type |
---|---|---|
1575.42 MHz | BDS | C1X, C1P |
Galileo | C1Q, C1X | |
GPS | C1C, C1W | |
1176.45 MHz | BDS | C5X, C5P |
Galileo | C5Q, C5X | |
GPS | C1Q, C5X |
Receiver Type | Stations Number | Observation Type |
---|---|---|
JAVAD TRE_3 DELTA | 20 | G: C1C C1W C1X C2W C2X C5X E: C1X C5X C6X C7X C8X C: C1X C2I C5X C6I C7I C7Z C8X |
JAVAD TRE_G3TH_DELTA | 13 | G: C1C C1W C1X C2W C2X C5X E: C1X C5X C7X C: C2I C7I C7Z |
LEICA GR50 | 18 | G: C1C C1L C1W C2L C2W C5Q E: C1C C5Q C6C C7Q C8Q C: C1P C2I C5P C6I C7D C7I |
SEPT POLARX5 | 82 | G: C1C C1L C1W C2L C2W C5Q E: C1C C5Q C6C C7Q C8Q C: C1P C2I C5P C6I C7D C7I |
SEPT POLARX5TR | 22 | G: C1C C2S C2W C5Q E: C1C C5Q C6C C7Q C8Q C: C1P C2I C5P C6I C7I |
TRIMBLE ALLOY | 40 | G: C1C C1X C2W C2X C5X E: C1X C5X C6X C7X C8X C: C1X C2I C5X C6I C7D C7I |
Receiver Type | Sys | DCB Type | Mean STD (ns) |
---|---|---|---|
LEICA GR50 | BDS | C1P–C5P | 3.128 |
GAL | C1C–C5Q | 2.549 | |
GPS | C1C–C5Q | 3.002 | |
SEPT POLARX5 | BDS | C1P–C5P | 2.339 |
GAL | C1C–C5Q | 1.222 | |
GPS | C1C–C5Q | 1.225 | |
SEPT POLARX5TR | BDS | C1P–C5P | 2.203 |
GAL | C1C–C5Q | 1.058 | |
GPS | C1C–C5Q | 1.151 | |
JAVAD TRE_3 DELTA | BDS | C1X–C5X | 2.370 |
GAL | C1X–C5X | 0.906 | |
GPS | C1W–C5X | 0.947 | |
JAVAD TRE_G3TH DELTA | GAL | C1X–C5X | 1.350 |
GPS | C1W–C5X | 1.421 | |
TRIMBLE ALLOY | BDS | C1X–C5X | 2.392 |
GAL | C1X–C5X | 2.195 |
Constellation | Code Type |
---|---|
BDS | C2I–C7I, C2I–C6I C1X–C5X, C1P–C5P C1X–C6I, C1P–C6I C1X–C7Z, C1X–C8X |
GPS | C1C–C1W C1C–C5Q, C1C–C5X |
Galileo | C1C–C5Q, C1C–C5X |
BDS DCB Type | Mean STD |
---|---|
C1P–C5P | 0.177 |
C1X–C5X | 0.153 |
C2I–C7I | 0.328 |
C2I–C6I | 0.236 |
C2I–C1P | 0.098 |
C2I–C1X | 0.166 |
C2I–C5P | 0.200 |
C2I–C5X | 0.374 |
C2I–C7Z | 0.399 |
C2I–C8X | 0.941 |
BDS DCB Type | Mean STD |
---|---|
GPS C1C–C5Q | 0.186 |
GPS C1W–C5X | 0.172 |
GAL C1C–C5Q | 0.177 |
GAL C1X–C5X | 0.198 |
C1 | C2 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|
C1 | 0 | −0.00299 | −0.12881 | −0.08807 | −0.11419 | −0.12136 |
C2 | 0.00299 | 0 | −0.12581 | −0.08508 | −0.11119 | −0.11836 |
C5 | 0.12881 | 0.12581 | 0 | 0.04073 | 0.01462 | 0.00745 |
C6 | 0.08807 | 0.08508 | −0.04073 | 0 | −0.02612 | −0.03328 |
C7 | 0.11419 | 0.11119 | −0.01462 | 0.02612 | 0 | −0.00717 |
C8 | 0.12136 | 0.11836 | −0.00745 | 0.03328 | 0.00717 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yue, D.; Wang, H.; Ma, H.; Liu, Z.; Yue, C. Comprehensive Analysis of BDS/GNSS Differential Code Bias and Compatibility Performance. Remote Sens. 2024, 16, 4217. https://doi.org/10.3390/rs16224217
Wang Y, Yue D, Wang H, Ma H, Liu Z, Yue C. Comprehensive Analysis of BDS/GNSS Differential Code Bias and Compatibility Performance. Remote Sensing. 2024; 16(22):4217. https://doi.org/10.3390/rs16224217
Chicago/Turabian StyleWang, Yafeng, Dongjie Yue, Hu Wang, Hongyang Ma, Zhiqiang Liu, and Caiya Yue. 2024. "Comprehensive Analysis of BDS/GNSS Differential Code Bias and Compatibility Performance" Remote Sensing 16, no. 22: 4217. https://doi.org/10.3390/rs16224217
APA StyleWang, Y., Yue, D., Wang, H., Ma, H., Liu, Z., & Yue, C. (2024). Comprehensive Analysis of BDS/GNSS Differential Code Bias and Compatibility Performance. Remote Sensing, 16(22), 4217. https://doi.org/10.3390/rs16224217