Landslide Susceptibility Mapping Based on Ensemble Learning in the Jiuzhaigou Region, Sichuan, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Database
2.2.1. Historical Landslides
2.2.2. Landslide Conditioning Factors
3. Methods
3.1. Evaluation of Conditioning Factors
3.2. Base Classifiers
3.2.1. Support Vector Machines
3.2.2. Logistic Regression
3.2.3. Gaussian Naive Bayes
3.3. Ensemble Learning Methods
3.3.1. Bagging
3.3.2. Voting
3.3.3. Boosting
3.3.4. Stacking
3.4. Model Evaluation Measures
3.5. SHapley Additive exPlanations
4. Results
4.1. Multicollinearity
4.2. Model Performance and Evaluation
4.3. Landslide Susceptibility Mapping
5. Discussion
5.1. SHAP Model Interpretation
5.2. Limitation and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abedini, M.; Ghasemian, B.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Binh, T.P.; Bin Ahmad, B.; Dieu, T.B. A Novel Hybrid Approach of Bayesian Logistic Regression and Its Ensembles for Landslide Susceptibility Assessment. Geocarto Int. 2019, 34, 1427–1457. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-Based Landslide Susceptibility Models Using Frequency Ratio, Logistic Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Dong, V.D.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Tran, V.P.; Hai-Bang, L.; Tien-Thinh, L.; Phan, T.T.; et al. A Spatially Explicit Deep Learning Neural Network Model for the Prediction of Landslide Susceptibility. Catena 2020, 188, 104451. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S. GIS-Based Comparative Study of Bayes Network, Hoeffding Tree and Logistic Model Tree for Landslide Susceptibility Modeling. Catena 2021, 203, 105344. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide Hazard Assessment Using Analytic Hierarchy Process (AHP): A Case Study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, R.K.; AlAwadh, M.A.; Islam, S.; Khan, R.A.; Qureshi, M.N. GIS-Based Landslide Susceptibility Evaluation Using Fuzzy-AHP Multi-Criteria Decision-Making Techniques in the Abha Watershed, Saudi Arabia. Environ. Earth Sci. 2018, 77, 276. [Google Scholar] [CrossRef]
- Cengiz, L.D.; Ercanoglu, M. A Novel Data-Driven Approach to Pairwise Comparisons in AHP Using Fuzzy Relations and Matrices for Landslide Susceptibility Assessments. Environ. Earth Sci. 2022, 81, 222. [Google Scholar] [CrossRef]
- Nanehkaran, Y.A.; Mao, Y.; Azarafza, M.; Kockar, M.K.; Zhu, H.-H. Fuzzy-Based Multiple Decision Method for Landslide Susceptibility and Hazard Assessment: A Case Study of Tabriz, Iran. Geomech. Eng. 2021, 24, 407–418. [Google Scholar] [CrossRef]
- Wang, Y.; Nanehkaran, Y.A. GIS-Based Fuzzy Logic Technique for Mapping Landslide Susceptibility Analyzing in a Coastal Soft Rock Zone. Nat. Hazards 2024, 120, 10889–10921. [Google Scholar] [CrossRef]
- Karaman, M.O.; Cabuk, S.N.; Pekkan, E. Utilization of Frequency Ratio Method for the Production of Landslide Susceptibility Maps: Karaburun Peninsula Case, Turkey. Environ. Sci. Pollut. Res. 2022, 29, 91285–91305. [Google Scholar] [CrossRef]
- Alsabhan, A.H.; Singh, K.; Sharma, A.; Alam, S.; Pandey, D.D.; Rahman, S.A.S.; Khursheed, A.; Munshi, F.M. Landslide Susceptibility Assessment in the Himalayan Range Based along Kasauli-Parwanoo Road Corridor Using Weight of Evidence, Information Value, and Frequency Ratio. J. King Saud. Univ. Sci. 2022, 34, 101759. [Google Scholar] [CrossRef]
- Sahana, M.; Sajjad, H. Evaluating Effectiveness of Frequency Ratio, Fuzzy Logic and Logistic Regression Models in Assessing Landslide Susceptibility: A Case from Rudraprayag District, India. J. Mt. Sci. 2017, 14, 2150–2167. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on Landslide Susceptibility Mapping Using Support Vector Machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Deng, H.; Wu, X.; Zhang, W.; Liu, Y.; Li, W.; Li, X.; Zhou, P.; Zhuo, W. Slope-Unit Scale Landslide Susceptibility Mapping Based on the Random Forest Model in Deep Valley Areas. Remote Sens. 2022, 14, 4245. [Google Scholar] [CrossRef]
- Rong, G.; Li, K.; Su, Y.; Tong, Z.; Liu, X.; Zhang, J.; Zhang, Y.; Li, T. Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment. Remote Sens. 2021, 13, 4694. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, X.; Li, Y.; Xu, P.; Xia, W. Dynamic Development of Landslide Susceptibility Based on Slope Unit and Deep Neural Networks. Landslides 2021, 18, 281–302. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.-W.; Lee, S. Convolutional Neural Network (CNN) with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Merghadi, A.; Shirzadi, A.; Hoang, N.; Hussain, Y.; Avtar, R.; Chen, Y.; Binh, T.P.; Yamagishi, H. Different Sampling Strategies for Predicting Landslide Susceptibilities Are Deemed Less Consequential with Deep Learning. Sci. Total Environ. 2020, 720, 137320. [Google Scholar] [CrossRef]
- Nanehkaran, Y.A.; Zhu, L.; Chen, J.; Azarafza, M.; Mao, Y. Application of Artificial Neural Networks and Geographic Information System to Provide Hazard Susceptibility Maps for Rockfall Failures. Environ. Earth Sci. 2022, 81, 475. [Google Scholar] [CrossRef]
- Huang, F.; Yan, J.; Fan, X.; Yao, C.; Huang, J.; Chen, W.; Hong, H. Uncertainty Pattern in Landslide Susceptibility Prediction Modelling: Effects of Different Landslide Boundaries and Spatial Shape Expressions. Geosci. Front. 2022, 13, 101317. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, L.; Hayakawa, Y.S.; Yin, K.; Gui, L.; Jin, B.; Guo, Z.; Peduto, D. Advanced Integration of Ensemble Learning and MT-InSAR for Enhanced Slow-Moving Landslide Susceptibility Zoning. Eng. Geol. 2024, 331, 107436. [Google Scholar] [CrossRef]
- Qiao, X.; Du, J.; Lugli, S.; Ren, J.; Xiao, W.; Chen, P.; Tang, Y. Are Climate Warming and Enhanced Atmospheric Deposition of Sulfur and Nitrogen Threatening Tufa Landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China? Sci. Total Environ. 2016, 562, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Scaringi, G.; Xu, Q.; Zhan, W.; Dai, L.; Li, Y.; Pei, X.; Yang, Q.; Huang, R. Coseismic Landslides Triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou Earthquake (Sichuan, China): Factors Controlling Their Spatial Distribution and Implications for the Seismogenic Blind Fault Identification. Landslides 2018, 15, 967–983. [Google Scholar] [CrossRef]
- Hu, X.; Mei, H.; Zhang, H.; Li, Y.; Li, M. Performance Evaluation of Ensemble Learning Techniques for Landslide Susceptibility Mapping at the Jinping County, Southwest China. Nat. Hazards 2021, 105, 1663–1689. [Google Scholar] [CrossRef]
- Zeng, T.; Jin, B.; Glade, T.; Xie, Y.; Li, Y.; Zhu, Y.; Yin, K. Assessing the Imperative of Conditioning Factor Grading in Machine Learning-Based Landslide Susceptibility Modeling: A Critical Inquiry. Catena 2024, 236, 107732. [Google Scholar] [CrossRef]
- Xia, L.; Shen, J.; Zhang, T.; Dang, G.; Wang, T. GIS-Based Landslide Susceptibility Modeling Using Data Mining Techniques. Front. Earth Sci. 2023, 11, 1187384. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W.; Xu, X.; Zhang, Z.; Wu, X. Evaluation of Neural Network Models for Landslide Susceptibility Assessment. Int. J. Digit. Earth 2022, 15, 934–953. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Xu, Q.; Deng, C.; Li, Q. GIS-Based Earthquake-Triggered-Landslide Susceptibility Mapping with an Integrated Weighted Index Model in Jiuzhaigou Region of Sichuan Province, China. Nat. Hazards Earth Syst. Sci. 2019, 19, 1973–1988. [Google Scholar] [CrossRef]
- Ciurleo, M.; Cascini, L.; Calvello, M. A Comparison of Statistical and Deterministic Methods for Shallow Landslide Susceptibility Zoning in Clayey Soils. Eng. Geol. 2017, 223, 71–81. [Google Scholar] [CrossRef]
- Manzo, G.; Tofani, V.; Segoni, S.; Battistini, A.; Catani, F. GIS Techniques for Regional-Scale Landslide Susceptibility Assessment: The Sicily (Italy) Case Study. Int. J. Geogr. Inf. Sci. 2013, 27, 1433–1452. [Google Scholar] [CrossRef]
- Oh, H.-J.; Pradhan, B. Application of a Neuro-Fuzzy Model to Landslide-Susceptibility Mapping for Shallow Landslides in a Tropical Hilly Area. Comput. Geosci. 2011, 37, 1264–1276. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Lee, S. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. Catena 2020, 186, 104249. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R.; Andreani, L.; Rahnama, M. Improving Landslide Susceptibility Mapping Using Morphometric Features in the Mawat Area, Kurdistan Region, NE Iraq: Comparison of Different Statistical Models. Geomorphology 2018, 319, 147–160. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Niu, R.; Peng, L. Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area, China. Remote Sens. 2017, 9, 938. [Google Scholar] [CrossRef]
- Kornejady, A.; Ownegh, M.; Bahremand, A. Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods. Catena 2017, 152, 144–162. [Google Scholar] [CrossRef]
- Meneses, B.M.; Pereira, S.; Reis, E. Effects of Different Land Use and Land Cover Data on the Landslide Susceptibility Zonation of Road Networks. Nat. Hazards Earth Syst. Sci. 2019, 19, 471–487. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhang, Z.; Xu, Q.; Li, W. Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake. Remote Sens. 2021, 13, 1157. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Stacked Regressions. Mach. Learn. 1996, 24, 49–64. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An Ensemble Prediction of Flood Susceptibility Using Multivariate Discriminant Analysis, Classification and Regression Trees, and Support Vector Machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Schapire, R. The Strength of Weak Learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef]
- Wolpert, D. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative Study of Landslide Susceptibility Mapping with Different Recurrent Neural Networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Neural Information Processing Systems (NIPS): La Jolla, CA, USA, 2017; Volume 30. [Google Scholar]
- Yi, Y.; Zhang, Z.; Zhang, W.; Jia, H.; Zhang, J. Landslide Susceptibility Mapping Using Multiscale Sampling Strategy and Convolutional Neural Network: A Case Study in Jiuzhaigou Region. Catena 2020, 195, 104851. [Google Scholar] [CrossRef]
- Alizadeh, M.; Alizadeh, E.; Asadollahpour Kotenaee, S.; Shahabi, H.; Beiranvand Pour, A.; Panahi, M.; Bin Ahmad, B.; Saro, L. Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran. Sustainability 2018, 10, 3376. [Google Scholar] [CrossRef]
- Erener, A.; Mutlu, A.; Sebnem Düzgün, H. A Comparative Study for Landslide Susceptibility Mapping Using GIS-Based Multi-Criteria Decision Analysis (MCDA), Logistic Regression (LR) and Association Rule Mining (ARM). Eng. Geol. 2016, 203, 45–55. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Wang, C.; Liu, J.; Zhang, L. Susceptibility Assessment of Landslides Triggered by Earthquakes in the Western Sichuan Plateau. Catena 2019, 175, 63–76. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiu, H.; Liu, Z.; Ye, B.; Tang, B.; Li, Y.; Kamp, U. Rainfall and Water Level Fluctuations Dominated the Landslide Deformation at Baihetan Reservoir, China. J. Hydrol. 2024, 642, 131871. [Google Scholar] [CrossRef]
- Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide Susceptibility Prediction Using Slope Unit-Based Machine Learning Models Considering the Heterogeneity of Conditioning Factors. J. Rock Mech. Geotech. Eng. 2023, 15, 1127–1143. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference On Computer Vision And Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
Legend | |||
---|---|---|---|
Number | Lithology | Number | Lithology |
a | Holocene Alluvial | j | Ice Peak Group |
b | Pleistocene Glaciers Accumulate | k | Qiongyi Group |
c | Oligocene Geru Group | l | Late Carboniferous Hollowa Group |
d | Baoding Group or Baiguowan Group | m | Gangou Group |
e | Sanzhushan Group–Maso Mountain Group | n | Posongchong Group–Qujing Group |
f | Qingtianbao Group–Yanyuan Group | o | Early Devonian Segala Group |
g | Dashibao Group–Pinecigou Group | p | Lou Shanguan Group |
h | Permian Mafic Rocks | q | Wooden Seat Group–Crystal Group |
i | Gunda Overview Group | l | Yang Tianba Group |
Source | Time | Scale | Format | Factor |
---|---|---|---|---|
Landslides | - | Shapefile | - | |
ASTER DEM (https://earthexplorer.usgs.gov/) | 2011 | 30 m | TIFF | Slope |
Aspect | ||||
Profile curvature | ||||
Plan curvature | ||||
SPI | ||||
TWI | ||||
Underlying geographic information data (https://www.webmap.cn/) | 2021 | 1:1,000,000 | Shapefile | Distance to road |
Distance to human active point | ||||
History earthquake point (https://data.earthquake.cn/) | 2010–2022 | - | Shapefile | Distance to history earthquake point |
Geological map | 2017 | 1:1,000,000 | TIFF | Distance to faults |
Lithology | ||||
LULC map (http://data.ess.tsinghua.edu.cn/) | 2020 | 30 m | TIFF | LULC |
Landsat 8 | 2022 | 30 m | TIFF | NDVI |
Chinese Academy of Sciences, Center for Resource and Environmental Data and Sciences | 2002–2022 | 1000 m | TIFF | Annual precipitation |
Confusion Matrix | Predicted Value | ||
---|---|---|---|
Positive Class (1) | Negative Class (0) | ||
True value | Positive Class (1) | True Positive (TP) | False Negative (FN) |
Negative Class (0) | False Positive (FP) | True Negative (TN) |
Model | Accuracy | Precision | AUC | Recall | Kappa | Matthews | |
---|---|---|---|---|---|---|---|
Base classifiers | SVM | 0.8672 | 0.8952 | 0.9267 | 0.8318 | 0.7345 | 0.7363 |
LR | 0.8230 | 0.8119 | 0.9020 | 0.8407 | 0.6560 | 0.6464 | |
GNB | 0.8761 | 0.9126 | 0.9174 | 0.8318 | 0.7522 | 0.7551 | |
Ensemble learning methods | Voting | 0.9070 | 0.9259 | 0.9789 | 0.8849 | 0.8141 | 0.8149 |
Bagging | 0.9380 | 0.9380 | 0.9847 | 0.9380 | 0.8761 | 0.8762 | |
Stacking | 0.9161 | 0.9126 | 0.9516 | 0.8718 | 0.7922 | 0.8081 | |
Boosting | 0.9336 | 0.9437 | 0.9789 | 0.9115 | 0.8672 | 0.8681 |
Model | Accuracy | Precision | Auc | Recall | Kappa | Matthews | |
---|---|---|---|---|---|---|---|
Base classifiers | SVM | 0.8571 | 0.9069 | 0.9192 | 0.7959 | 0.7142 | 0.7197 |
LR | 0.8265 | 0.8200 | 0.9042 | 0.8367 | 0.6530 | 0.6531 | |
GNB | 0.8571 | 0.9069 | 0.9017 | 0.7959 | 0.7142 | 0.7197 | |
Ensemble learning methods | Voting | 0.8775 | 0.9092 | 0.9296 | 0.8571 | 0.7551 | 0.7557 |
Bagging | 0.8775 | 0.9243 | 0.9340 | 0.8571 | 0.7551 | 0.7557 | |
Stacking | 0.8673 | 0.9285 | 0.9291 | 0.8124 | 0.7522 | 0.7551 | |
Boosting | 0.8857 | 0.8869 | 0.9180 | 0.8163 | 0.7628 | 0.7629 |
Level | Very Low | Low | Moderate | High | Very High | |||||
---|---|---|---|---|---|---|---|---|---|---|
Density | Ratio | Density | Ratio | Density | Ratio | Density | Ratio | Density | Ratio | |
SVM | 0.0249 | 46.23 | 0.0867 | 17.76 | 0.0992 | 18.56 | 0.1577 | 10.22 | 1.0223 | 7.23 |
LR | 0.0071 | 40.93 | 0.0323 | 27.23 | 0.1235 | 16.52 | 0.2438 | 9.22 | 1.5450 | 6.10 |
GNB | 0.0035 | 60.30 | 0.0218 | 27.12 | 0.1280 | 12.22 | 0.2022 | 6.32 | 1.4233 | 6.26 |
Voting | 0.0013 | 41.72 | 0.0316 | 30.24 | 0.1273 | 12.83 | 0.2012 | 7.12 | 1.2011 | 6.63 |
Boosting | 0.0025 | 52.23 | 0.0225 | 19.60 | 0.1125 | 11.29 | 0.2532 | 7.26 | 1.4324 | 9.62 |
Bagging | 0.0004 | 42.57 | 0.0023 | 18.31 | 0.0183 | 21.95 | 0.1943 | 11.29 | 1.6792 | 5.68 |
Stacking | 0.0020 | 56.07 | 0.0113 | 17.48 | 0.0204 | 15.22 | 0.1822 | 5.21 | 1.6172 | 6.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, B.; Zhang, Z.; Xiong, S.; Zhang, W.; Yi, Y.; Liu, Z.; Liu, C. Landslide Susceptibility Mapping Based on Ensemble Learning in the Jiuzhaigou Region, Sichuan, China. Remote Sens. 2024, 16, 4218. https://doi.org/10.3390/rs16224218
An B, Zhang Z, Xiong S, Zhang W, Yi Y, Liu Z, Liu C. Landslide Susceptibility Mapping Based on Ensemble Learning in the Jiuzhaigou Region, Sichuan, China. Remote Sensing. 2024; 16(22):4218. https://doi.org/10.3390/rs16224218
Chicago/Turabian StyleAn, Bangsheng, Zhijie Zhang, Shenqing Xiong, Wanchang Zhang, Yaning Yi, Zhixin Liu, and Chuanqi Liu. 2024. "Landslide Susceptibility Mapping Based on Ensemble Learning in the Jiuzhaigou Region, Sichuan, China" Remote Sensing 16, no. 22: 4218. https://doi.org/10.3390/rs16224218
APA StyleAn, B., Zhang, Z., Xiong, S., Zhang, W., Yi, Y., Liu, Z., & Liu, C. (2024). Landslide Susceptibility Mapping Based on Ensemble Learning in the Jiuzhaigou Region, Sichuan, China. Remote Sensing, 16(22), 4218. https://doi.org/10.3390/rs16224218