EDH-STNet: An Evaporation Duct Height Spatiotemporal Prediction Model Based on Swin-Unet Integrating Multiple Environmental Information Sources
Abstract
:1. Introduction
2. Data Source and Calculation
2.1. ERA5 Reanalysis Data
2.2. Calculation of Atmospheric Refraction Characteristics
2.3. Naval Postgraduate School Evaporation Duct Model
2.4. Calculation of EDH Spatiotemporal Distribution
3. Methodology
3.1. Problem Definition
3.2. Feature Engineering and HMPs–EDH Mapping Set Construction
3.3. EDH-STNet Model
3.3.1. Principle of the Swin-Unet
3.3.2. Development of the EDH-STNet Model
3.4. Model Training
4. Results and Analysis
4.1. Experimental Settings
4.1.1. Evaluation Indicators
4.1.2. Baseline Models
- Swin-Transformer [27]: The Swin-Transformer has been extensively utilized across various fields of CV and has subsequently gained widespread adoption in weather forecasting. Therefore, we employ the Swin-Transformer as a baseline model for the EDH spatiotemporal prediction, comparing it with the EDH-STNet model.
- Swin-Unet: To comprehensively evaluate the impact of HMPs on the prediction performance of the EDH-STNet model, this study establishes an additional EDH spatiotemporal prediction model using Swin-Unet for comparison. A key distinguishing feature of the Swin-Unet model is its exclusion of multiple HMPs from its inputs, focusing solely on EDH spatiotemporal prediction. Additionally, this model was developed using methods consistent with those applied to the EDH-STNet model.
- SwinUnet-5: To verify the enhancement of prediction performance in the EDH-STNet model with the inclusion of additional parameters such as EVP, SLHF, TP, and SWH, this study develops an additional baseline model called SwinUnet-5. This model integrates five HMPs—AT, AP, SST, RH, and WS—and takes EDH as its joint input.
4.2. Prediction Results and Analysis
4.2.1. One-Step Prediction Results and Analysis
4.2.2. Multiple-Step Prediction Results and Analysis
4.2.3. Performance Testing Based on Measured EDH
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hitney, H.V.; Richter, J.H.; Pappert, R.A.; Anderson, K.D.; Baumgartner, G.B. Tropospheric radio propagation assessment. Proc. IEEE 1985, 73, 265–283. [Google Scholar] [CrossRef]
- Zhang, J. Methods of Retrieving Tropospheric Ducts Above Ocean Surface Using Radar Sea Clutter and GPS Signals. Ph.D. Thesis, Xidian University, Xi’an, China, 2012. [Google Scholar]
- Ji, H.; Guo, L.; Zhang, J.; Wei, Y.; Guo, X.; Zhang, Y.; Nie, T.; Feng, J. IPILT–OHPL: An Over-the-Horizon Propagation Loss Prediction Model Established by Incorporating Prior Information Into the LSTM–Transformer Structure. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 10067–10082. [Google Scholar] [CrossRef]
- Gilles, M.A.; Earls, C.; Bindel, D. A Subspace Pursuit Method to Infer Refractivity in the Marine Atmospheric Boundary Layer. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5606–5617. [Google Scholar] [CrossRef]
- Fountoulakis, V.; Earls, C. Inverting for Maritime Environments Using Proper Orthogonal Bases from Sparsely Sampled Electromagnetic Propagation Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7166–7176. [Google Scholar] [CrossRef]
- Isaakidis, S.A.; Dimou, I.N.; Xenos, T.D.; Dris, N.A. An artificial neural network predictor for tropospheric surface duct phenomena. Nonlinear Process Geophys. 2007, 14, 569–573. [Google Scholar] [CrossRef]
- Yan, X.; Yang, K.; Ma, Y. Calculation Method for Evaporation Duct Profiles Based on Artificial Neural Network. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2274–2278. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Zhu, M.; Jiang, Z.; Li, Y. An Evaporation Duct Height Prediction Method Based on Deep Learning. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1307–1311. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Zhao, J.; Zhao, D.; Zhu, X. PDD_GBR: Research on Evaporation Duct Height Prediction Based on Gradient Boosting Regression Algorithm. Radio Sci. 2019, 54, 949–962. [Google Scholar] [CrossRef]
- Zhao, W.P.; Li, J.; Zhao, J.; Zhao, D.; Lu, J.; Wang, X. XGB Model: Research on Evaporation Duct Height Prediction Based on XGBoost Algorithm. Radioengineering 2020, 29, 81–93. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Zhao, J.; Jiang, T.; Zhu, J.; Zhao, D.; Zhao, J. Research on evaporation duct height prediction based on back propagation neural network. IET Microw. Antennas Propag. 2020, 14, 1547–1554. [Google Scholar] [CrossRef]
- Mai, Y.; Sheng, Z.; Shi, H.; Li, C.; Liu, L.; Liao, Q.; Zhang, W.; Zhou, S. A New Diagnostic Model and Improved Prediction Algorithm for the Heights of Evaporation Ducts. Front. Earth Sci. 2020, 8, 102. [Google Scholar] [CrossRef]
- Mai, Y.; Sheng, Z.; Shi, H.; Li, C.; Liao, Q.; Bao, J. A New Short-Term Prediction Method for Estimation of the Evaporation Duct Height. IEEE Access. 2020, 8, 136036–136045. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Zhu, Q.; Wang, H.; Zhou, Y.; Jiang, M.; Zhang, S.; Wang, B. Evaporation Duct Height Nowcasting in China’s Yellow Sea Based on Deep Learning. Remote Sens. 2021, 13, 1577. [Google Scholar] [CrossRef]
- Hong, F.; Zhang, Q. Time Series Analysis of Evaporation Duct Height over South China Sea: A Stochastic Modeling Approach. Atmosphere 2021, 12, 1663. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, J.; Li, J.; Zhao, D.; Huang, L.; Zhu, J.; Lu, J.; Wang, X. An Evaporation Duct Height Prediction Model Based on a Long Short-Term Memory Neural Network. IEEE Trans. Antennas Propag. 2021, 69, 7795–7804. [Google Scholar] [CrossRef]
- Liao, Q.; Mai, Y.; Sheng, Z.; Wang, Y.; Ni, Q.; Zhou, S. The Comparison of Long Short-Term Memory Neural Network and Deep Forest for the Evaporation Duct Height Prediction. IEEE Trans. Antennas Propag. 2023, 71, 4444–4450. [Google Scholar] [CrossRef]
- Chai, X.; Li, J.; Zhao, J.; Wang, W.; Zhao, X. LGB-PHY: An Evaporation Duct Height Prediction Model Based on Physically Constrained LightGBM Algorithm. Remote Sens. 2022, 14, 3448. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, J.; Zhang, Y.; Guo, X.; You, Z. Influence of sea surface temperature on numerical simulation of lower atmospheric duct over the South China Sea. Chin. J. Radio Sci. 2022, 37, 40–47. (In Chinese) [Google Scholar]
- Cheng, Y.; Zha, M.; You, Z.; Zhang, Y. Duct climatology over the South China Sea based on European Center for Medium Range Weather Forecast reanalysis data. J. Atmos. Sol. Terr. Phys. 2021, 222, 105720. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, S.; Zhang, L.; Guo, X.; Han, J. Comparison between predicted and experimental result of regional evaporation duct over sea. Chin. J. Radio Sci. 2017, 32, 215–220. (In Chinese) [Google Scholar]
- ITU-R Recommendation P.453-14. The Radio Refractive Index: Its Formula and Refractivity Data; ITU: Geneva, Switerland, 2012. [Google Scholar]
- Hao, X.; Li, Q.; Guo, L.; Lin, L.; Ding, Z.; Zhao, Z.; Yi, W. Digital maps of atmospheric refractivity and atmospheric ducts based on a meteorological observation datasets. IEEE Trans. Antennas Propag. 2022, 70, 2873–2883. [Google Scholar] [CrossRef]
- Heidler, K.; Mou, L.; Baumhoer, C.; Dietz, A.; Zhu, X.X. HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4300514. [Google Scholar] [CrossRef]
- Han, L.; Liang, H.; Chen, H.; Zhang, W.; Ge, Y. Convective Precipitation Nowcasting Using U-Net Model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4103508. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv 2010, arXiv:11929.2020. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Bojesomo, A.; Al-Marzouqi, H.; Liatsis, P. Spatiotemporal Vision Transformer for Short Time Weather Forecasting. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021. [Google Scholar]
- Bojesomo, A.; AlMarzouqi, H.; Liatsis, P. A Novel Transformer Network with Shifted Window Cross-Attention for Spatiotemporal Weather Forecasting. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 45–55. [Google Scholar] [CrossRef]
- Kavitha, S.; Nagamani, H.S.; Sumanth, S.; Pareek, P.K.; Mageswari, P.U. Weather Forecasting Using Advanced Artificial Intelligence Techniques Based on Swin Transformer Network. In Proceedings of the 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT), Bengaluru, India, 15–16 March 2024; pp. 1–6. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv 2021, arXiv:2105.05537. [Google Scholar]
- Huang, L.; Zhao, X.; Liu, Y.; Yang, P.; Ding, J.; Zhou, Z. The Diurnal Variation of the Evaporation Duct Height and Its Relationship with Environmental Variables in the South China Sea. IEEE Trans. Antennas Propag. 2022, 70, 10865–10875. [Google Scholar] [CrossRef]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Amer. Meteorol. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Shi, Y.; Yang, F.; Zhang, H.; Ma, Y. Prediction of Over-the-Horizon Electromagnetic Wave Propagation in Evaporation Ducts Based on the Gated Recurrent Unit Network Model. IEEE Trans. Antennas Propag. 2023, 71, 3485–3496. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, K.; Yang, Q. Statistical Analysis of the Quantified Relationship between Evaporation Duct and Oceanic Evaporation for Unstable Conditions. J. Atmos. Ocean. Technol. 2017, 34, 2489–2497. [Google Scholar] [CrossRef]
- Benhmammouch, O.; Caouren, N.; Khenchaf, A. Modeling of roughness effects on electromagnetic waves propagation above sea surface using 3D parabolic equation. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. 817–820. [Google Scholar]
- Skolnik, M.I. Introduction to Radar Systems; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Aires, F.; Prigent, C.; Orlandi, E.; Milz, M.; Eriksson, P.; Crewell, S.; Lin, C.; Kangas, V. Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clear-sky case. J. Geophys. Res. 2015, 120, 311–334. [Google Scholar] [CrossRef]
- Babin, S.M.; Dockery, G.D. LKB-Based Evaporation Duct Model Comparison with Buoy Data. J. Appl. Meteorol. 2002, 41, 434–446. [Google Scholar] [CrossRef]
- Paulus, R.A. Practical application of an evaporation duct model. Radio Sci. 1985, 20, 887–896. [Google Scholar] [CrossRef]
- Babin, S.M.; Young, G.S.; Carton, J.A. A New Model of the Oceanic Evaporation Duct. J. Appl. Meteorol. 1997, 36, 193–204. [Google Scholar] [CrossRef]
- Foken, T. 50 years of the Monin-Obukhov similarity theory. Bound. Layer Meteor. 2006, 119, 431–447. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Holtslag, A.A.M. Flux Parameterization over Land Surfaces for Atmospheric Models. J. Appl. Meteorol. 1991, 30, 327–341. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, K.; Yang, Y.; Ma, Y. A New Evaporation Duct Climatology over the South China Sea. J. Meteorol. Res. 2015, 29, 764–778. [Google Scholar] [CrossRef]
- Grachev, A.A.; Andreas, E.L.; Fairall, C.W.; Guest, P.S.; Persson, P.O.G. SHEBA flux-profile relationships in the stable atmospheric boundary layer. Bound. Layer Meteor. 2007, 124, 315–333. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Zhu, Q.; Wang, B. A Four-Parameter M-Profile Model for the Evaporation Duct Estimation from Radar Clutter. Prog. Electromagn. Res. 2011, 114, 353–368. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Ye, M.; Li, B.; Nie, J.; Qian, Y.; Yang, L. Ca-STANet: Spatiotemporal Attention Network for Chlorophyll-a Prediction with Gap-Filled Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4203314. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Rasp, S.; Dueben, P.D.; Scher, S.; Weyn, J.A.; Mouatadid, S.; Thuerey, N. WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002203. [Google Scholar] [CrossRef]
HMP | Reanalysis Height | Unit |
---|---|---|
AT | 2 m | °C |
DT | 2 m | °C |
u-component of wind | 10 m | m/s |
v-component of wind | 10 m | m/s |
AP | Surface | hPa |
SST | Surface | °C |
EVP | Surface | m of water equivalent |
SLHF | Surface | J/m |
TP | Surface | m |
SWH | Mean height of the highest third of waves | m |
Model | Indicator | ||
---|---|---|---|
RMSE | MAE | RRMSE | |
Unet | 1.121 | 0.708 | 0.214 |
Swin-Transformer | 0.968 | 0.599 | 0.184 |
Swin-Unet | 0.832 | 0.489 | 0.158 |
SwinUnet-5 | 0.773 | 0.451 | 0.147 |
EDH-STNet | 0.677 | 0.421 | 0.129 |
Model | Indicator | ||
---|---|---|---|
RMSE | MAE | RRMSE | |
Unet | 1.596 | 1.014 | 0.167 |
Swin-Transformer | 1.353 | 0.839 | 0.142 |
Swin-Unet | 1.038 | 0.641 | 0.109 |
SwinUnet-5 | 0.878 | 0.533 | 0.092 |
EDH-STNet | 0.793 | 0.484 | 0.083 |
Multiple-Step | Indicator | Model | ||||
---|---|---|---|---|---|---|
Unet | Swin-Transformer | Swin-Unet | SwinUnet-5 | EDH-STNet | ||
2 | RMSE | 1.308 | 1.084 | 0.980 | 0.905 | 0.790 |
MAE | 1.080 | 0.876 | 0.778 | 0.703 | 0.573 | |
RRMSE | 0.249 | 0.207 | 0.187 | 0.172 | 0.150 | |
4 | RMSE | 1.569 | 1.439 | 1.382 | 1.254 | 0.956 |
MAE | 1.314 | 1.167 | 1.121 | 1.033 | 0.755 | |
RRMSE | 0.299 | 0.274 | 0.263 | 0.239 | 0.182 | |
8 | RMSE | 1.979 | 1.832 | 1.781 | 1.620 | 1.347 |
MAE | 1.654 | 1.523 | 1.480 | 1.359 | 1.088 | |
RRMSE | 0.377 | 0.349 | 0.339 | 0.309 | 0.257 | |
16 | RMSE | 2.387 | 2.170 | 1.954 | 1.869 | 1.627 |
MAE | 2.034 | 1.843 | 1.652 | 1.577 | 1.345 | |
RRMSE | 0.455 | 0.413 | 0.372 | 0.356 | 0.310 |
Multiple-Step | Indicator | Model | ||||
---|---|---|---|---|---|---|
Unet | Swin-Transformer | Swin-Unet | SwinUnet-5 | EDH-STNet | ||
2 | RMSE | 1.691 | 1.441 | 1.193 | 1.005 | 0.838 |
MAE | 1.177 | 0.948 | 0.756 | 0.610 | 0.411 | |
RRMSE | 0.177 | 0.151 | 0.125 | 0.105 | 0.088 | |
4 | RMSE | 1.852 | 1.737 | 1.535 | 1.339 | 1.030 |
MAE | 1.375 | 1.133 | 1.038 | 0.780 | 0.575 | |
RRMSE | 0.194 | 0.182 | 0.161 | 0.140 | 0.108 | |
8 | RMSE | 2.133 | 2.070 | 1.753 | 1.571 | 1.328 |
MAE | 1.665 | 1.503 | 1.206 | 1.015 | 0.786 | |
RRMSE | 0.223 | 0.217 | 0.183 | 0.164 | 0.139 | |
16 | RMSE | 2.567 | 2.415 | 2.211 | 1.917 | 1.707 |
MAE | 1.976 | 1.732 | 1.526 | 1.379 | 1.126 | |
RRMSE | 0.269 | 0.253 | 0.231 | 0.201 | 0.178 |
Model | Indicator | ||
---|---|---|---|
RMSE | MAE | RRMSE | |
Unet | 2.365 | 1.993 | 0.200 |
Swin-Transformer | 2.012 | 1.711 | 0.171 |
Swin-Unet | 1.846 | 1.453 | 0.156 |
SwinUnet-5 | 1.491 | 1.237 | 0.126 |
EDH-STNet | 1.206 | 1.023 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Guo, L.; Zhang, J.; Wei, Y.; Guo, X.; Zhang, Y. EDH-STNet: An Evaporation Duct Height Spatiotemporal Prediction Model Based on Swin-Unet Integrating Multiple Environmental Information Sources. Remote Sens. 2024, 16, 4227. https://doi.org/10.3390/rs16224227
Ji H, Guo L, Zhang J, Wei Y, Guo X, Zhang Y. EDH-STNet: An Evaporation Duct Height Spatiotemporal Prediction Model Based on Swin-Unet Integrating Multiple Environmental Information Sources. Remote Sensing. 2024; 16(22):4227. https://doi.org/10.3390/rs16224227
Chicago/Turabian StyleJi, Hanjie, Lixin Guo, Jinpeng Zhang, Yiwen Wei, Xiangming Guo, and Yusheng Zhang. 2024. "EDH-STNet: An Evaporation Duct Height Spatiotemporal Prediction Model Based on Swin-Unet Integrating Multiple Environmental Information Sources" Remote Sensing 16, no. 22: 4227. https://doi.org/10.3390/rs16224227
APA StyleJi, H., Guo, L., Zhang, J., Wei, Y., Guo, X., & Zhang, Y. (2024). EDH-STNet: An Evaporation Duct Height Spatiotemporal Prediction Model Based on Swin-Unet Integrating Multiple Environmental Information Sources. Remote Sensing, 16(22), 4227. https://doi.org/10.3390/rs16224227