Classification of Ship Type from Combination of HMM–DNN–CNN Models Based on Ship Trajectory Features
Abstract
:1. Introduction
- Ship-type classification methodology was proposed by combining a DL model and a thresholding method, which incorporates dataset enhancement with filtering based on the trajectory features of each ship type, resulting in significantly higher classification accuracy compared to commonly used simple DL techniques.
- The optimal ship classification model, combining multiple DL models (HMM, DNN, and CNN), was utilized.
2. Materials and Methods
2.1. Study Area
2.2. Explanation of the Ship Trajectory Data
2.3. Methodology
2.3.1. Dataset Generation
2.3.2. Dataset Enhancement
2.3.3. Dataset Augmentation
2.3.4. Ship-Type Classification Techniques
2.3.5. Model Evaluation
3. Parameters-Based Trajectory Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheng, P.; Yin, J. Extracting shipping route patterns by trajectory clustering model based on Automatic Identification System data. Sustainability 2018, 10, 2327. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Soares, C.G. Ship trajectory uncertainty prediction based on a gaussian process model. Ocean Eng. 2019, 182, 499–511. [Google Scholar] [CrossRef]
- Jeon, H.-K.; Han, J.R. Random forest classifier-based ship type prediction with limited ship information of AIS and V-PASS. Korean J. Remote Sens. 2022, 38, 435–446. [Google Scholar]
- Han, J.R. A Spatio-Temporal Variation Pattern Analysis of Fishing Activity in the Jeju Sea of Korea Using V-PASS Data. Master’s Thesis, Pukyong National University, Busan, Republic of Korea, 2021. [Google Scholar]
- Hong, D.-B.; Yang, C.-S. Classification of passing vessels around the Ieodo Ocean Research Station using Automatic Identification System (AIS): November 21–30, 2013. J. Korean Soc. Mar. Environ. 2013, 17, 297–305. [Google Scholar] [CrossRef]
- Kazimierski, W.; Stateczny, A. Radar and Automatic Identification System track fusion in an electronic chart display and information system. J. Navig. 2015, 68, 1141–1154. [Google Scholar] [CrossRef]
- Emmens, T.; Amrit, C.; Abdi, A.; Ghosh, M. The promises and perils of Automatic Identification System data. Expert Syst. Appl. 2021, 178, 114975. [Google Scholar] [CrossRef]
- Harati-Mokhtari, A. Automatic Identification System (AIS): Data reliability and human error implications. J. Navig. 2007, 60, 373–389. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.-P.; Kalli, J.; Kukkonen, J. The evolution of shipping emissions and the costs of regulation changes in the northern Eu area. Atmos. Chem. Phys. 2013, 13, 11375–11389. [Google Scholar] [CrossRef]
- Park, J.-H.; Jeon, H.-K.; Yang, C.-S. Hidden Markov Model (HMM)-based fishing activity prediction using V-PASS data. J. Coast. Disaster Prev. 2021, 8, 221–227. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, G.; Yang, J. An adaptive hierarchical clustering method for ship trajectory data based on DBSCAN algorithm. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 10–12 March 2017. [Google Scholar]
- Zhou, Y.; Daamen, W.; Vellinga, T.; Hoogendoorn, S.P. Ship classification based on ship behavior clustering from AIS data. Ocean Eng. 2019, 175, 176–187. [Google Scholar] [CrossRef]
- Lee, H.-T.; Lee, J.-S.; Yang, H.; Cho, I.-S. An AIS data-driven approach to analyze the pattern of ship trajectories in ports using the DBSCAN algorithm. Appl. Sci. 2021, 11, 799. [Google Scholar] [CrossRef]
- Harun-Al-Rashid, A.; Yang, C.-S.; Shin, D.-W. Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction. J. Navig. 2022, 75, 1082–1099. [Google Scholar] [CrossRef]
- Xiong, G.; Wang, F.; Yu, W. Spatial singularity-exponent-domain multiresolution imaging-based SAR ship target detection method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5215212. [Google Scholar] [CrossRef]
- Jeon, H.-K.; Yang, C.-S. Enhancement of ship type classification from a combination of CNN and KNN. Electronics 2021, 10, 1169. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Tang, M.; Qin, J.; Wu, P.; Yang, T.; Zhang, H. Marine drifting trajectory prediction based on LSTM-DNN algorithm. Wirel. Commun. Mob. Com. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Song, X.; Chen, Q.; Yan, Z. A multi-feature ensemble learning classification method for ship classification with space-based AIS data. Appl. Sci. 2021, 11, 10336. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Y.; Zhang, Z.; Wu, L.; Wang, G. A hierarchical spatial-temporal embedding method based on enhanced trajectory features for ship type classification. Sensors 2022, 22, 711. [Google Scholar] [CrossRef]
- Guo, T.; Xie, L. Research on ship trajectory classification based on a Deep Convolutional Neural Network. J. Mar. Sci. Eng. 2022, 10, 568. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Achuthan, K.; Zhang, X. A ship movement classification based on Automatic Identification System (AIS) data using Convolutional Neural Network. Ocean Eng. 2020, 218, 108182. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. An AIS-based Deep Learning framework for regional ship behavior prediction. Reliab. Eng. Syst. Saf. 2021, 215, 107819. [Google Scholar] [CrossRef]
- Duan, H.; Ma, F.; Miao, L.; Zhang, C. A semi-supervised deep learning approach for vessel trajectory classification based on AIS data. Ocean Coast. Manag. 2022, 218, 106015. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data. Ocean Eng. 2020, 209, 107478. [Google Scholar] [CrossRef]
- Feng, C.; Fu, B.; Luo, Y.; Li, H. The design and development of a ship trajectory data management and analysis system based on AIS. Sensors 2022, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xu, H.; Zeng, W. Ship classification method for massive AIS trajectories based on GNN. J. Phys. Conf. Ser. 2021, 2025, 012024. [Google Scholar] [CrossRef]
- Yan, Z.; Song, X.; Zhong, H.; Yang, L.; Wang, Y. Ship classification and anomaly detection based on spaceborne AIS data considering behavior characteristics. Sensors 2022, 22, 7713. [Google Scholar] [CrossRef]
- Kim, T.-H.; Jeong, J.; Yang, C.-S. Construction and operation of AIS system on Socheongcho Ocean Research Station. J. Coast. Disaster Prev. 2016, 3, 74–80. [Google Scholar] [CrossRef]
- Wang, W.; Bin, J.; Zaji, A.; Halldearn, R.; Guillaume, F.; Li, E.; Liu, Z. A multi-task learning-based framework for global maritime trajectory and destination prediction with AIS data. Marit. Transp. Res. 2022, 3, 100072. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, Y.; Liu, R.W. MVFFNet: Multi-view feature fusion network for imbalanced ship classification. Pattern Recognit. Lett. 2021, 151, 26–32. [Google Scholar] [CrossRef]
- Shin, D.-W.; Yang, C.-S.; Harun-Al-Rashid, A. Prediction of longline fishing activity from V-Pass data using Hidden Markov Model. Korean J. Remote Sens. 2022, 38, 79–82. [Google Scholar]
- Vermard, Y.; Rivot, E.; Mahévas, S.; Marchal, P.; Gascuel, D. Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models. Ecol. Modell. 2010, 221, 1757–1759. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, X.; Han, M.; Sun, T.; Li, C. The Study of Identification of Fishing Vessel Behavior Based on VMS Data. In Proceedings of the 3rd International Conference on Telecommunications and Communication Engineering, Tokyo, Japan, 9–12 November 2019. [Google Scholar]
- Son, G.-M.; Choi, W.-J.; Baek, J.-E.; Shin, D.-W.; Rashid, A.H.A.; Yang, C.-S. Approach to Classifying Ship Types from AIS Data using DNN and CNN. In Proceedings of the International Symposium on Remote Sensing, Virtual, 16–18 May 2022. [Google Scholar]
Ship Type | No. of Training Ship Dataset | No. of Test Ship Dataset |
---|---|---|
Fishing boat | 207 | 52 |
Passenger | 200 | 50 |
Container | 204 | 51 |
Other ship type | 203 | 50 |
Total dataset | 815 | 203 |
Model | Input | Parameters and Setting | Output |
---|---|---|---|
HMM | SOG, ROT | Structure: two-level hierarchical model Emission probability: five grading of SOG, ROT Transition probability: two grading of fishing state | Fishing boat |
DNN | Berth distance, ROTS, heading | Network
Learning rate: 0.001 Optimizer: Adam Batch size: 10 Training epoch: 20 Cost function: cross entropy error | Passenger ship |
CNN | Lon, Lat, SOG, COG | Network
| Container ship |
Combination | Model | Accuracy (%) | F-1 Score (%) | Average (F-1) |
---|---|---|---|---|
HDC | HMM | 99.01 | 99.33 | 97.54 |
DNN | 96.69 | 97.46 | ||
CNN | 96.04 | 95.83 | ||
CDH | CNN | 93.1 | 95.45 | 97.31 |
DNN | 98.03 | 98.51 | ||
HMM | 98.04 | 97.96 | ||
DHC | DNN | 95.57 | 96.97 | 97.27 |
HMM | 98.69 | 99 | ||
CNN | 96.04 | 95.83 | ||
CHD | CNN | 93.1 | 95.45 | 97.12 |
HMM | 98.68 | 98.99 | ||
DNN | 98.68 | 98.99 | ||
DCH | DNN | 95.57 | 96.97 | 97.03 |
CNN | 94.77 | 96.15 | ||
HMM | 98.04 | 97.96 | ||
HCD | HMM | 99.01 | 99.33 | 96.75 |
CNN | 92.05 | 94 | ||
DNN | 97 | 96.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.-W.; Yang, C.-S. Classification of Ship Type from Combination of HMM–DNN–CNN Models Based on Ship Trajectory Features. Remote Sens. 2024, 16, 4245. https://doi.org/10.3390/rs16224245
Shin D-W, Yang C-S. Classification of Ship Type from Combination of HMM–DNN–CNN Models Based on Ship Trajectory Features. Remote Sensing. 2024; 16(22):4245. https://doi.org/10.3390/rs16224245
Chicago/Turabian StyleShin, Dae-Woon, and Chan-Su Yang. 2024. "Classification of Ship Type from Combination of HMM–DNN–CNN Models Based on Ship Trajectory Features" Remote Sensing 16, no. 22: 4245. https://doi.org/10.3390/rs16224245
APA StyleShin, D. -W., & Yang, C. -S. (2024). Classification of Ship Type from Combination of HMM–DNN–CNN Models Based on Ship Trajectory Features. Remote Sensing, 16(22), 4245. https://doi.org/10.3390/rs16224245