Hybrid GRU–Random Forest Model for Accurate Atmospheric Duct Detection with Incomplete Sounding Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neural Networks for Time Series
2.2. Random Forest
- Random Sampling: Bootstrap sampling is employed to randomly draw samples from the original training set, forming the training data for each tree. This method ensures that the training data for each tree are independent and potentially diverse;
- Feature Random Selection: At each split node of the decision tree, a subset of features is randomly selected for the split. This strategy minimizes the correlation among the trees within the model, introduces more randomness, and enhances the model’s generalization capability;
- Building Trees: These steps are repeated to train each decision tree based on the selected samples and features;
- Aggregation of Predictions: For classification tasks, a voting mechanism determines the final category; for regression tasks, the prediction results of all trees are averaged to compute the final prediction value.
2.3. Atmospheric Duct Discrimination
3. Results and Analysis
3.1. Data
3.2. Prediction of Atmospheric Parameters
3.3. Atmospheric Duct Prediction Based on Random Forest
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mesnard, F.; Sauvageot, H. Climatology of Anomalous Propagation Radar Echoes in a Coastal Area. J. Appl. Meteorol. Climatol. 2010, 49, 2285–2300. [Google Scholar] [CrossRef]
- Hao, X.-J.; Li, Q.-L.; Guo, L.-X.; Lin, L.-K.; Ding, Z.-H.; Zhao, Z.-W.; Yi, W. Digital Maps of Atmospheric Refractivity and Atmospheric Ducts Based on a Meteorological Observation Datasets. IEEE Trans. Antennas Propag. 2022, 70, 2873–2883. [Google Scholar] [CrossRef]
- Xia, Y.; Xie, F.; Lu, X. Enhancement of Arctic surface ozone during the 2020–2021 winter associated with the sudden stratospheric warming. Environ. Res. Lett. 2023, 18, 024003. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; He, M. Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system. Atmos. Chem. Phys. 2024, 24, 3839–3856. [Google Scholar] [CrossRef]
- Turton, J.D.; Bennetts, D.A.; Farmer, S.F.G. An introduction to radio ducting. Meteorol. Mag. 1988, 117, 245–254. [Google Scholar]
- Shi, Y.; Wang, S.; Yang, F.; Yang, K. Statistical Analysis of Hybrid Atmospheric Ducts over the Northern South China Sea and Their Influence on Over-the-Horizon Electromagnetic Wave Propagation. J. Mar. Sci. Eng. 2023, 11, 669. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J. The investigation of cooperation diversity for communication exploiting evaporation ducts in the South China sea. IEEE Trans. Antennas Propag. 2022, 70, 8337–8347. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Shi, Y.; Zhang, H.; Yang, F.; Hu, D.; Dong, G.; Shu, Y. Long-term over-the-horizon microwave channel measurements and statistical analysis in evaporation ducts over the Yellow Sea. Front. Mar. Sci. 2023, 10, 1077470. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Yang, C. Long-range microwave links guided by evaporation ducts. IEEE Commun. Mag. 2022, 60, 68–72. [Google Scholar] [CrossRef]
- Yang, N.; Su, D.; Wang, T. Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sens. 2023, 15, 3317. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, X.; Zou, J.; Hu, T.; Qiu, Z.; Wang, B.; Li, Z.; Cui, C.; Cao, R. Investigating the spatio–temporal characteristics of lower atmospheric ducts across the China seas by performing a long–term simulation using the WRF model. Front. Mar. Sci. 2024, 11, 1332805. [Google Scholar] [CrossRef]
- Gerstoft, P.; Rogers, L.T.; Krolik, J.L.; Hodgkiss, W.S. Inversion for refractivity parameters from radar sea clutter. Radio Sci. 2003, 38, 8053. [Google Scholar] [CrossRef]
- Douvenot, R.; Fabbro, V. On the knowledge of radar coverage at sea using real time refractivity from clutter. IET Radar Sonar Navig. 2010, 4, 293–301. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Zhang, A.; Fan, H.; Guo, L. A Random Forest Algorithm Combined with Bayesian Optimization for Atmospheric Duct Estimation. Remote Sens. 2023, 15, 4296. [Google Scholar] [CrossRef]
- Jang, D.; Kim, J.; Park, Y.B.; Choo, H. Study of an Atmospheric Refractivity Estimation from a Clutter Using Genetic Algorithm. Appl. Sci. 2022, 12, 8566. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.-S.; Zhao, Z.; Wang, H.-G. Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm. Prog. Electromagn. Res. M 2009, 9, 79–91. [Google Scholar] [CrossRef]
- Newbold, P. ARIMA model building and the time series analysis approach to forecasting. J. Forecast. 1983, 2, 23–35. [Google Scholar] [CrossRef]
- Ho, S.L.; Xie, M. The use of ARIMA models for reliability forecasting and analysis. Comput. Ind. Eng. 1998, 35, 213–216. [Google Scholar] [CrossRef]
- Kumar, U.; Jain, V.K. ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch. Environ. Res. Risk Assess. 2010, 24, 751–760. [Google Scholar] [CrossRef]
- Liu, H.; Shi, J.; Erdem, E. Prediction of wind speed time series using modified Taylor Kriging method. Energy 2010, 35, 4870–4879. [Google Scholar] [CrossRef]
- Tseng, F.-M.; Yu, H.-C.; Tzeng, G.-H. Combining neural network model with seasonal time series ARIMA model. Technol. Forecast. Soc. Change 2002, 69, 71–87. [Google Scholar] [CrossRef]
- Tsoi, A.C. Recurrent neural network architectures: An overview. In Adaptive Processing of Sequences and Data Structures: International Summer School on Neural Networks “E.R. Caianiello”, Vietri sul Mare, Salerno, Italy, September 6-13, 1997, Tutorial Lectures; Giles, C.L., Gori, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 1–26. ISBN 978-3-540-69752-7. [Google Scholar]
- Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent Advances in Recurrent Neural Networks. arXiv 2018, arXiv:1801.01078. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- De Ville, B. Decision trees. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 448–455. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Alberoni, P.P.; Andersson, T.; Mezzasalma, P.; Michelson, D.B.; Nanni, S. Use of the vertical reflectivity profile for identification of anomalous propagation. Meteorol. Appl. 2001, 8, 257–266. [Google Scholar] [CrossRef]
- Bech, J.; Sairouni, A.; Codina, B.; Lorente, J.; Bebbington, D. Weather radar anaprop conditions at a Mediterranean coastal site. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 829–832. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Nieto, R.; Gimeno, L. Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive. Earth Syst. Sci. Data 2019, 11, 603–627. [Google Scholar] [CrossRef]
- Jiménez, Á.B.; Lázaro, J.L.; Dorronsoro, J.R. Finding Optimal Model Parameters by Discrete Grid Search. In Innovations in Hybrid Intelligent Systems; Corchado, E., Corchado, J.M., Abraham, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 120–127. ISBN 978-3-540-74972-1. [Google Scholar]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y. Multiple predicting K-fold cross-validation for model selection. J. Nonparametr. Stat. 2018, 30, 197–215. [Google Scholar] [CrossRef]
R2-Score | Temp | Height | Vapor Pressure | Wind Speed | Wind Direction |
---|---|---|---|---|---|
Training Sets | 0.9152 | 0.8623 | 0.8144 | 0.5913 | 0.6164 |
Validation Set | 0.9052 | 0.8891 | 0.7871 | 0.5763 | 0.5613 |
Testing Set | 0.9066 | 0.8704 | 0.7881 | 0.5422 | 0.5107 |
Pressure | Temp | Height | Vapor Pressure | Wind Speed | Wind Direction |
---|---|---|---|---|---|
hPa | °C | m | hPa | m/s | ° |
MSE | MSE | MSE | MSE | MAPE | |
1000 | 0.53869 | 161.15085 | 5.87945 | 5.10126 | 28.35029 |
925 | 0.95047 | 147.43068 | 5.17165 | 10.12768 | 32.91381 |
850 | 1.63513 | 130.11270 | 8.59465 | 9.77982 | 44.31677 |
700 | 1.62421 | 126.85946 | 5.10126 | 8.17118 | 56.19095 |
Variant | Single | Double | Treble | |||
---|---|---|---|---|---|---|
GRU | LSTM | GRU | LSTM | GRU | LSTM | |
Temperature/°C | 0.53094 | 0.54151 | 0.54204 | 0.59616 | 0.51201 | 0.64376 |
Vapor Pressure/hPa | 6.56092 | 7.32616 | 6.24601 | 7.21120 | 6.18203 | 7.22746 |
Height/m | 166.82834 | 189.10083 | 167.64525 | 209.29814 | 171.20314 | 223.69974 |
Wind Speed/m/s | 6.15613 | 6.46087 | 6.32554 | 6.58230 | 6.12651 | 6.48521 |
Wind Direction/° | 29.44751 | 31.05189 | 30.62275 | 33.78993 | 32.11548 | 30.13900 |
Time/s | 6.58 | 7.51 | 11.80 | 15.02 | 16.65 | 21.64 |
Model | Situation | Precision | Recall | F1-Score | Support |
---|---|---|---|---|---|
50–300 m | Duct Events | 0.83 | 0.84 | 0.84 | 114 |
Without Duct | 0.95 | 0.94 | 0.94 | 331 | |
Accuracy | 0.92 | 445 | |||
300–800 m | Duct Events | 0.34 | 0.75 | 0.47 | 55 |
Without Duct | 0.96 | 0.80 | 0.87 | 390 | |
Accuracy | 0.79 | 445 | |||
800–1500 m | Duct Events | 0.42 | 0.75 | 0.54 | 76 |
Without Duct | 0.94 | 0.78 | 0.85 | 369 | |
Accuracy | 0.78 | 445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Guo, L.; Li, J.; Yu, Z.; Sun, S.; Xu, T.; Zhao, H.; Guo, L. Hybrid GRU–Random Forest Model for Accurate Atmospheric Duct Detection with Incomplete Sounding Data. Remote Sens. 2024, 16, 4308. https://doi.org/10.3390/rs16224308
Yan Y, Guo L, Li J, Yu Z, Sun S, Xu T, Zhao H, Guo L. Hybrid GRU–Random Forest Model for Accurate Atmospheric Duct Detection with Incomplete Sounding Data. Remote Sensing. 2024; 16(22):4308. https://doi.org/10.3390/rs16224308
Chicago/Turabian StyleYan, Yi, Linjing Guo, Jiangting Li, Zhouxiang Yu, Shuji Sun, Tong Xu, Haisheng Zhao, and Lixin Guo. 2024. "Hybrid GRU–Random Forest Model for Accurate Atmospheric Duct Detection with Incomplete Sounding Data" Remote Sensing 16, no. 22: 4308. https://doi.org/10.3390/rs16224308
APA StyleYan, Y., Guo, L., Li, J., Yu, Z., Sun, S., Xu, T., Zhao, H., & Guo, L. (2024). Hybrid GRU–Random Forest Model for Accurate Atmospheric Duct Detection with Incomplete Sounding Data. Remote Sensing, 16(22), 4308. https://doi.org/10.3390/rs16224308