Differentiating Cheatgrass and Medusahead Phenological Characteristics in Western United States Rangelands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Developing Training and Test Data
2.4. Modeling Phenology
3. Results
3.1. Phenology Decision Tree Analysis
3.2. Phenology Training Data
3.3. Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SOST | SOSN | EOST | EOSN | MAXT | MAXN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | ||
2017 | R2 | 0.96 | 0.98 | 0.94 | 0.92 | 0.71 | 0.55 | 0.86 | 0.84 | 0.78 | 0.90 | 1.00 | 1.00 |
r | 0.98 | 0.99 | 0.97 | 0.96 | 0.86 | 0.75 | 0.94 | 0.92 | 0.88 | 0.95 | 1.00 | 1.00 | |
MAE | 0.21 | 0.11 | 0.24 | 0.12 | 0.76 | 0.57 | 1.35 | 0.86 | 0.45 | 0.34 | 0.00 | 0.00 | |
RRMSE | 5.55 | 2.76 | 0.57 | 0.36 | 5.53 | 5.22 | 2.27 | 1.79 | 3.72 | 2.90 | 0.01 | 0.05 | |
2018 | R2 | 0.96 | 0.97 | 0.91 | 0.95 | 0.87 | 0.61 | 0.94 | 0.96 | 0.90 | 0.85 | 1.00 | 1.00 |
r | 0.98 | 0.98 | 0.95 | 0.98 | 0.94 | 0.78 | 0.97 | 0.98 | 0.95 | 0.92 | 1.00 | 1.00 | |
MAE | 0.13 | 0.05 | 0.17 | 0.03 | 0.42 | 0.12 | 0.64 | 0.31 | 0.32 | 0.16 | 0.00 | 0.02 | |
RRMSE | 3.84 | 2.25 | 0.60 | 0.22 | 3.58 | 2.28 | 1.36 | 0.97 | 2.97 | 1.93 | 0.02 | 0.17 | |
2019 | R2 | 0.98 | 0.99 | 0.95 | 0.98 | 0.86 | 0.41 | 0.94 | 0.91 | 0.92 | 0.89 | 1.00 | 1.00 |
r | 0.99 | 1.00 | 0.98 | 0.99 | 0.94 | 0.64 | 0.97 | 0.96 | 0.96 | 0.95 | 1.00 | 1.00 | |
MAE | 0.11 | 0.04 | 0.13 | 0.04 | 0.40 | 0.19 | 0.54 | 0.36 | 0.31 | 0.15 | 0.00 | 0.00 | |
RRMSE | 2.90 | 1.31 | 0.38 | 0.18 | 3.57 | 3.10 | 1.20 | 1.14 | 2.88 | 1.88 | 0.02 | 0.03 | |
2020 | R2 | 0.96 | 0.99 | 0.94 | 0.95 | 0.90 | 0.55 | 0.96 | 0.90 | 0.91 | 0.92 | 1.00 | 1.00 |
r | 0.98 | 0.99 | 0.97 | 0.97 | 0.95 | 0.75 | 0.98 | 0.95 | 0.95 | 0.96 | 1.00 | 1.00 | |
MAE | 0.16 | 0.08 | 0.16 | 0.09 | 0.32 | 0.26 | 0.45 | 0.46 | 0.32 | 0.18 | 0.00 | 0.00 | |
RRMSE | 4.53 | 2.00 | 0.42 | 0.28 | 2.98 | 3.41 | 1.03 | 1.24 | 2.97 | 2.00 | 0.00 | 0.00 | |
2021 | R2 | 0.91 | 0.92 | 0.80 | 0.75 | 0.83 | 0.56 | 0.95 | 0.72 | 0.87 | 0.86 | 1.00 | 0.98 |
r | 0.96 | 0.96 | 0.90 | 0.87 | 0.91 | 0.75 | 0.98 | 0.87 | 0.94 | 0.94 | 1.00 | 0.99 | |
MAE | 0.33 | 0.29 | 0.38 | 0.29 | 0.29 | 0.28 | 0.48 | 0.80 | 0.44 | 0.32 | 0.00 | 0.00 | |
RRMSE | 6.81 | 5.76 | 0.82 | 0.70 | 3.09 | 3.15 | 1.13 | 1.65 | 3.77 | 2.87 | 0.04 | 0.00 |
SOST | SOSN | EOST | EOSN | MAXT | MAXN | ||
---|---|---|---|---|---|---|---|
2017 | U-statistic | 197,468,344.5 ** | 89,387,548.5 ** | 141,249,540.5 ** | 85,685,862.5 ** | 187,547,484.5 ** | 35,507,098 ** |
effect size | −0.85 | 0.16 | −0.32 | 0.20 | −0.76 | 0.67 | |
2018 | U-statistic | 210,365,165 ** | 93,046,952.5 ** | 151,436,039 ** | 113,544,012.5 ** | 197,023,902.5 ** | 75,791,524 ** |
effect size | −0.82 | 0.20 | −0.31 | 0.02 | −0.70 | 0.35 | |
2019 | U-statistic | 180,185,628.5 ** | 146,370,580 ** | 188,988,769 ** | 182,153,827 ** | 215,571,194.5 ** | 164,276,548 ** |
effect size | −0.40 | −0.14 | −0.47 | −0.42 | −0.68 | −0.28 | |
2020 | U-statistic | 147,928,271.5 ** | 125,572,657 ** | 179,987,034.5 ** | 176,333,033 ** | 190,429,299.5 ** | 163,344,940.5 ** |
effect size | −0.38 | −0.17 | −0.68 | −0.65 | −0.78 | −0.53 | |
2021 | U-statistic | 56,210,773 ** | 68,597,582 ** | 70,585,046 ** | 74,527,591 ** | 59,946,545 ** | 77,348,693.5 ** |
effect size | −0.33 | −0.62 | −0.66 | −0.76 | −0.41 | −0.82 | |
2022 a | U-statistic | 10,676,011.5 ** | 10,289,900 * | 14,793,177 ** | 7,371,812 ** | 13,857,482.5 ** | 9,785,941 |
effect size | −0.07 | −0.04 | −0.49 | 0.26 | −0.39 | 0.02 | |
2017–2022 | U-statistic | 4,475,995,305 ** | 3,157,955,127.5 ** | 4,320,763,126.5 ** | 3,824,070,167.5 ** | 4,862,155,702.5 ** | 3,256,081,399 ** |
effect size | −0.56 | −0.10 | −0.51 | −0.34 | −0.70 | −0.14 |
References
- Bradley, B.A.; Curtis, C.A.; Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Tuanmu, M.-N. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 2018, 20, 1493–1506. [Google Scholar] [CrossRef]
- Larson, K.B.; Tuor, A.R. Deep Learning Classification of Cheatgrass Invasion in the Western United States Using Biophysical and Remote Sensing Data. Remote Sens. 2021, 13, 1246. [Google Scholar] [CrossRef]
- Tarbox, B.C.; Van Schmidt, N.D.; Shyvers, J.E.; Saher, D.J.; Heinrichs, J.A.; Aldridge, C.L. Bridging the Gap Between Spatial Modeling and Management of Invasive Annual Grasses in the Imperiled Sagebrush Biome. Rangel. Ecol. Manag. 2022, 82, 104–115. [Google Scholar] [CrossRef]
- Bork, E.W.; West, N.E.; Price, K.P. In situ narrow-band reflectance characteristics of cover components in sagebrush-steppe. Geocarto Int. 1998, 13, 5–15. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Gu, Y.; Major, D.J. Estimating Abiotic Thresholds for Sagebrush Condition Class in the Western United States. Rangel. Ecol. Manag. 2020, 73, 297–308. [Google Scholar] [CrossRef]
- Pastick, N.J.; Wylie, B.K.; Rigge, M.B.; Dahal, D.; Boyte, S.P.; Jones, M.O.; Allred, B.W.; Parajuli, S.; Wu, Z. Rapid Monitoring of the Abundance and Spread of Exotic Annual Grasses in the Western United States Using Remote Sensing and Machine Learning. AGU Adv. 2021, 2, e2020AV000298. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K. Near-Real-Time Cheatgrass Percent Cover in the Northern Great Basin, USA, 2015. Rangelands 2016, 38, 278–284. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Howard, D.M.; Dahal, D.; Gilmanov, T. Estimating carbon and showing impacts of drought using satellite data in regression-tree models. Int. J. Remote Sens. 2018, 39, 374–398. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Major, D.J. Cheatgrass percent cover change: Comparing recent estimates to climate change—Driven predictions in the Northern Great Basin. Rangel. Ecol. Manag. 2016, 69, 265–279. [Google Scholar] [CrossRef]
- Pastick, N.J.; Dahal, D.; Wylie, B.K.; Parajuli, S.; Boyte, S.P.; Wu, Z. Characterizing land surface phenology and exotic annual grasses in dryland ecosystems using landsat and sentinel-2 data in harmony. Remote Sens. 2020, 12, 725. [Google Scholar] [CrossRef]
- Ganskopp, D.C.; Bedell, T.E. Cheatgrass and Its Relationship to Climate: A Review; Oregon State University: Corvallis, OR, USA, 1979. [Google Scholar]
- Bateman, T.M.; Villalba, J.J.; Ramsey, R.D.; Sant, E.D. A Multi-Scale Approach to Predict the Fractional Cover of Medusahead (Taeniatherum Caput-Medusae). Rangel. Ecol. Manag. 2020, 73, 538–546. [Google Scholar] [CrossRef]
- Hironaka, M. The Relative Rate of Root Development of Cheatgrass and Medusahead. J. Range Manag. 1961, 14, 263–267. [Google Scholar] [CrossRef]
- Chambers, J.C.; Maestas, J.D.; Pyke, D.A.; Boyd, C.S.; Pellant, M.; Wuenschel, A. Using Resilience and Resistance Concepts to Manage Persistent Threats to Sagebrush Ecosystems and Greater Sage-grouse. Rangel. Ecol. Manag. 2017, 70, 149–164. [Google Scholar] [CrossRef]
- Roth, C.L.; O’Neil, S.T.; Coates, P.S.; Ricca, M.A.; Pyke, D.A.; Aldridge, C.L.; Heinrichs, J.A.; Espinosa, S.P.; Delehanty, D.J. Targeting Sagebrush (Artemisia Spp.) Restoration Following Wildfire with Greater Sage-Grouse (Centrocercus Urophasianus) Nest Selection and Survival Models. Environ. Manag. 2022, 70, 288–306. [Google Scholar] [CrossRef]
- Mahood, A.L.; Fleishman, E.; Balch, J.K.; Fogarty, F.; Horning, N.; Leu, M.; Zillig, M.; Bradley, B.A. Cover-based allometric estimate of aboveground biomass of a non-native, invasive annual grass (Bromus tectorum L.) in the Great Basin, USA. J. Arid Environ. 2021, 193, 104582. [Google Scholar] [CrossRef]
- Dahal, D.; Pastick, N.J.; Boyte, S.P.; Parajuli, S.; Oimoen, M.J.; Megard, L.J. Multi-Species Inference of Exotic Annual and Native Perennial Grasses in Rangelands of the Western United States Using Harmonized Landsat and Sentinel-2 Data. Remote Sens. 2022, 14, 807. [Google Scholar] [CrossRef]
- Weisberg, P.J.; Dilts, T.E.; Greenberg, J.A.; Johnson, K.N.; Pai, H.; Sladek, C.; Kratt, C.; Tyler, S.W.; Ready, A. Phenology-based classification of invasive annual grasses to the species level. Remote Sens. Environ. 2021, 263, 112568. [Google Scholar] [CrossRef]
- Dahl, B.E.; Tisdale, E.W. Environmental Factors Related to Medusahead Distribution. J. Range Manag. 1975, 28, 463–468. [Google Scholar] [CrossRef]
- Dahal, D.; Boyte, S.P.; Postma, K.; Pastick, N.J.; Megard, L.J. Fractional Estimates of Multiple Exotic Annual Grass (EAG) Species in the Sagebrush Biome, USA, 2016–2023 (Ver. 4.0, July 2024). U.S. Geological Survey. 2021. Available online: https://www.sciencebase.gov/catalog/item/61716970d34ea36449a77130 (accessed on 26 August 2024).
- Benedict, T.D.; Boyte, S.P.; Dahal, D.; Shrestha, D.; Parajuli, S.; Megard, L.J. Extracting exotic annual grass phenology and climate relations in western U.S. rangeland ecoregions. Biol. Invasions 2023, 25, 2023–2041. [Google Scholar] [CrossRef]
- Bradley, B.A.; Mustard, J.F. Comparison of phenology trends by land cover class: A case study in the Great Basin, USA. Glob. Change Biol. 2008, 14, 334–346. [Google Scholar] [CrossRef]
- Cole, E.F.; Sheldon, B.C. The shifting phenological landscape: Within- and between-species variation in leaf emergence in a mixed-deciduous woodland. Ecol. Evol. 2017, 7, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Applestein, C.; Germino, M.J. Patterns of post-fire invasion of semiarid shrub-steppe reveals a diversity of invasion niches within an exotic annual grass community. Biol. Invasions 2021, 24, 741–759. [Google Scholar] [CrossRef]
- Brownsey, P.; James, J.J.; Barry, S.J.; Becchetti, T.A.; Davy, J.S.; Doran, M.P.; Forero, L.C.; Harper, J.M.; Larsen, R.E.; Larson-Praplan, S.R.; et al. Using Phenology to Optimize Timing of Mowing and Grazing Treatments for Medusahead (Taeniatherum caput-medusae). Rangel. Ecol. Manag. 2017, 70, 210–218. [Google Scholar] [CrossRef]
- Rinella, M.J.; Davy, J.S.; Kyser, G.B.; Mashiri, F.E.; Bellows, S.E.; James, J.J.; Peterson, V.F. Timing Aminopyralid to Prevent Seed Production Controls Medusahead (Taeniatherum caput-medusae) and Increases Forage Grasses. Invasive Plant Sci. Manag. 2018, 11, 61–68. [Google Scholar] [CrossRef]
- Clinton, N.; Potter, C.; Crabtree, B.; Genovese, V.; Gross, P.; Gong, P. Remote Sensing–Based Time-Series Analysis of Cheatgrass (Bromus tectorum L.) Phenology. J. Environ. Qual. 2010, 39, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Qin, Q.; Xu, D.; Hou, L.; Shen, B.; Xin, X. Comparing vegetation indices from Sentinel-2 and Landsat 8 under different vegetation gradients based on a controlled grazing experiment. Ecol. Indic. 2021, 133, 108363. [Google Scholar] [CrossRef]
- Dahal, D.; Boyte, S.P.; Postma, K.; Pastick, N.J.; Megard, L.J. Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2024 (Ver. 10.0, June 2024). U.S. Geological Survey Data Release . 2024. Available online: https://data.usgs.gov/datacatalog/data/USGS:664d0c06d34e6f297dfc2dcc (accessed on 26 August 2024).
- Wiken, E.; Nava, F.J.; Griffith, G.E. North American Terrestrial Ecoregions—Level III. Commission for Environmental Cooperation. 2011. Available online: http://www.cec.org/north-american-environmental-atlas/terrestrial-ecoregions-level-iii/ (accessed on 26 August 2024).
- PRISM Climate Group. Oregon State University. Available online: https://prism.oregonstate.edu (accessed on 3 December 2021).
- Gesch, D.B.; Evans, G.A.; Oimoen, M.J.; Arundel, S. The National Elevation Dataset. Am. Soc. Photogramm. Remote Sens. 2018, 68, 83–110. [Google Scholar]
- Dewitz, J.; Survey, U.S.G. National Land Cover Database (NLCD) 2019 Products (Ver. 3.0, February 2024). U.S. Geological Survey. 2021. Available online: https://data.usgs.gov/datacatalog/data/USGS:604a500ed34eb120311b006c (accessed on 20 June 2024).
- McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Chaney, N.W.; Wood, E.F.; McBratney, A.B.; Hempel, J.W.; Nauman, T.W.; Brungard, C.W.; Odgers, N.P. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 2016, 274, 54–67. [Google Scholar] [CrossRef]
- Thornton, M.M.; Shrestha, R.; Wei, Y.; Thornton, P.E.; Kao, S.C. Daymet: Annual Climate Summaries on a 1-km Grid for North America, Version 4 R1. ORNL Distributed Active Archive Center. 2022. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2130 (accessed on 26 August 2024).
- Chen, X.; Wang, D.; Chen, J.; Wang, C.; Shen, M. The mixed pixel effect in land surface phenology: A simulation study. Remote Sens. Environ. 2018, 211, 338–344. [Google Scholar] [CrossRef]
- Xie, Q.; Cleverly, J.; Moore, C.E.; Ding, Y.; Hall, C.C.; Ma, X.; Brown, L.A.; Wang, C.; Beringer, J.; Prober, S.M.; et al. Land surface phenology retrievals for arid and semi-arid ecosystems. ISPRS J. Photogramm. Remote Sens. 2022, 185, 129–145. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Taylor, S.D.; Browning, D.M.; Baca, R.A.; Gao, F. Constraints and Opportunities for Detecting Land Surface Phenology in Drylands. J. Remote Sens. 2021, 2021, 1–31. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Prevéy, J.S.; Seastedt, T.R.; Wilson, S. Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. J. Ecol. 2014, 102, 1549–1561. [Google Scholar] [CrossRef]
- USDA. The PLANTS Database. Available online: http://plants.usda.gov (accessed on 14 August 2024).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [Google Scholar] [CrossRef]
- Li, M.F.; Tang, X.P.; Wu, W.; Liu, H.B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers. Manag. 2013, 70, 139–148. [Google Scholar] [CrossRef]
- Benedict, T.D.; Brown, J.F.; Boyte, S.P.; Howard, D.M.; Fuchs, B.A.; Wardlow, B.D.; Tadesse, T.; Evenson, K.A. Exploring VIIRS Continuity with MODIS in an Expedited Capability for Monitoring Drought-Related Vegetation Conditions. Remote Sens. 2021, 13, 1210. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak-Łukaszewska, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Benedict, T.D.; Boyte, S.P.; Dahal, D.; Shrestha, D.; Parajuli, S.; Megard, L.J. Exotic Annual Grass (EAG) Phenology Estimates in the Western U.S. Rangelands Based on 30-m HLS NDVI (Ver. 2.0, April 2024). U.S. Geological Survey Data Release. 2022. Available online: https://www.usgs.gov/data/exotic-annual-grass-eag-phenology-estimates-western-us-rangelands-based-30-m-hls-ndvi-ver-30 (accessed on 26 August 2024).
- Rodney, W.B.; Le Tourneau, D.; Lambert, C.E. The Chemical Composition of Medusahead and Downy Brome. Weeds 1961, 9, 307–311. [Google Scholar] [CrossRef]
- Rodimtsev, S.; Pavlovskaya, N.; Vershinin, S.; Gorkova, I.; Gagarina, I. Assessment of the Vegetative Index NDVI as an Indicator of Crop Yield. In Proceedings of the XV International Scientific Conference “INTERAGROMASH 2022”, Rostov-on-Don, Russia, 25–27 May 2022; pp. 637–645. [Google Scholar]
- Weather Underground. Reno, NV Weather History. Available online: https://www.wunderground.com/history/weekly/us/nv/reno/KRNO/date/2024-2-2 (accessed on 5 August 2024).
- U.S. Climate Data. Daily Normals Reno—Nevada—January. Available online: https://www.usclimatedata.com/climate/reno/nevada/united-states/usnv0076 (accessed on 8 August 2024).
SOST | SOSN | EOST | EOSN | MAXT | MAXN | |
---|---|---|---|---|---|---|
Pearson’s r | 0.96 | 0.94 | 0.89 | 0.93 | 0.99 | 1.00 |
MAE | 0.39 | 0.65 | 0.92 | 1.79 | 0.08 | 0.03 |
SOST | SOSN | EOST | EOSN | MAXT | MAXN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | BRTE | TACA8 | ||
2017–2021 | R2 | 0.95 | 0.97 | 0.91 | 0.91 | 0.84 | 0.53 | 0.93 | 0.86 | 0.87 | 0.88 | 1.00 | 1.00 |
r | 0.98 | 0.98 | 0.95 | 0.95 | 0.92 | 0.73 | 0.97 | 0.93 | 0.94 | 0.94 | 1.00 | 1.00 | |
MAE | 0.19 | 0.11 | 0.22 | 0.11 | 0.44 | 0.29 | 0.69 | 0.56 | 0.37 | 0.23 | 0.00 | 0.00 | |
RRMSE | 4.73 | 2.82 | 0.56 | 0.35 | 3.75 | 3.43 | 1.40 | 1.36 | 3.26 | 2.32 | 0.02 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedict, T.D.; Boyte, S.P.; Dahal, D. Differentiating Cheatgrass and Medusahead Phenological Characteristics in Western United States Rangelands. Remote Sens. 2024, 16, 4258. https://doi.org/10.3390/rs16224258
Benedict TD, Boyte SP, Dahal D. Differentiating Cheatgrass and Medusahead Phenological Characteristics in Western United States Rangelands. Remote Sensing. 2024; 16(22):4258. https://doi.org/10.3390/rs16224258
Chicago/Turabian StyleBenedict, Trenton D., Stephen P. Boyte, and Devendra Dahal. 2024. "Differentiating Cheatgrass and Medusahead Phenological Characteristics in Western United States Rangelands" Remote Sensing 16, no. 22: 4258. https://doi.org/10.3390/rs16224258
APA StyleBenedict, T. D., Boyte, S. P., & Dahal, D. (2024). Differentiating Cheatgrass and Medusahead Phenological Characteristics in Western United States Rangelands. Remote Sensing, 16(22), 4258. https://doi.org/10.3390/rs16224258