Damage Detection and Segmentation in Disaster Environments Using Combined YOLO and Deeplab
Abstract
:1. Introduction
- By combining the detection and segmentation models, the performance of the evaluation metric is improved compared to a single-use model, and it can identify small objects that were previously undetected.
- It is possible to detect and segment information even at a long distance rather than a short distance.
- It is possible to detect and segment multiple types of damage information (multiple classes) rather than a single type, such as only cracks or piles, etc.
2. Related Work
3. Proposed Methodology
- (1)
- Deeplabv2: Using full-scale images;
- (2)
- InYD: Intersection of YOLOv7 and Deeplabv2;
- (3)
- DCIY: Deeplabv2 with Cropped Images by YOLOv7.
3.1. Deeplabv2
3.2. InYD
3.3. DCIY
Algorithm 1 Pseudo-code of DCIY | |
1. | procedure DCIY(IMG) |
2. | function Train(model, input): |
3. | Evaluation ← Eval(model(input)) |
4. | model update with Evaluation |
5. | end function |
6. | if input IMG from a camera then |
7. | if YOLOv7 is learning then |
8. | Train(YOLOv7, IMG) |
9. | else |
10. | Bbox ← YOLOv7(IMG) |
11. | Crop IMG ← Bbox ∩ IMG |
12. | end if |
13. | if Crop IMG exists then |
14. | if Deeplabv2 is learning then |
15. | Train(Deeplabv2, Crop IMG) |
16. | else |
17. | Seg IMG ← Deeplabv2(Crop IMG) |
18. | end if |
19. | end if |
20. | end if |
21. | end procedure |
4. Experimental Configurations
4.1. Dataset
4.2. Evaluation Method
5. Result and Discussions
5.1. Training
5.2. Result and Analysis
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Loenhout, J.; Below, R.; McClean, D. The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019). Technol Report. Centre for Research on the Epidemiology of Disasters (CRED) and United Nations Office for Disaster Risk Reduction (UNISDR), 2020. Available online: https://www.preventionweb.net/files/74124_humancostofdisasters20002019reportu.pdf (accessed on 13 October 2022).
- Gochoo, M.; Otgonbold, M.-E.; Ganbold, E.; Hsieh, J.-W.; Chang, M.-C.; Chen, P.-Y.; Dorj, B.; Al Jassmi, H.; Batnasan, G.; Alnajjar, F.; et al. Fisheye8k: A benchmark and dataset for fisheye camera object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 5305–5313. [Google Scholar]
- Zou, C.; Yu, Q.; Du, R.; Mo, H.; Song, Y.-Z.; Xiang, T.; Gao, C.; Chen, B.; Zhang, H. Sketchyscene: Richly-annotated scene sketches. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 421–436. [Google Scholar]
- Ge, C.; Sun, H.; Song, Y.Z.; Ma, Z.; Liao, J. Exploring local detail perception for scene sketch semantic segmentation. IEEE Trans. Image Process. 2022, 31, 1447–1461. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Yuan, F.; Yu, Y.; Li, L.; Tian, G. Investigation of DC electromagnetic-based motion induced eddy current on NDT for crack detection. IEEE Sens. J. 2021, 21, 7449–7457. [Google Scholar] [CrossRef]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Awadallah, O.; Sadhu, A. Automated multiclass structural damage detection and quantification using augmented reality. J. Infrastruct. Intell. Resil. 2023, 2, 100024. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- O’Shea, K. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Amjoud, A.B.; Amrouch, M. Object detection using deep learning, CNNs and vision transformers: A review. IEEE Access 2023, 11, 35479–35516. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Bai, Y.; Sezen, H.; Yilmaz, A. End-to-end deep learning methods for automated damage detection in extreme events at various scales. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 6640–6647. [Google Scholar]
- Guo, F.; Qian, Y.; Liu, J.; Yu, H. Pavement crack detection based on transformer network. Autom. Constr. 2023, 145, 104646. [Google Scholar] [CrossRef]
- He, Y.; Mu, X.; Wu, J.; Ma, Y.; Yang, R.; Zhang, H.; Wang, P.; Wang, H.; Wang, Y. Intelligent detection algorithm based on 2D/3D-UNet for internal defects of carbon fiber composites. Nondestruct. Test. Eval. 2024, 39, 923–938. [Google Scholar] [CrossRef]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Satellite image classification of building damages using airborne and satellite image samples in a deep learning approach. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 89–96. [Google Scholar] [CrossRef]
- Vetrivel, A.; Duarte, D.; Nex, F.; Gerke, M.; Kerle, N.; Vosselman, G. Potential of multi-temporal oblique airborne imagery for structural damage assessment. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 355–362. [Google Scholar] [CrossRef]
- Xu, J.Z.; Lu, W.; Li, Z.; Khaitan, P.; Zaytseva, V. Building damage detection in satellite imagery using convolutional neural networks. arXiv 2019, arXiv:1910.06444. [Google Scholar]
- Gupta, R.; Shah, M. Rescuenet: Joint building segmentation and damage assessment from satellite imagery. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 4405–4411. [Google Scholar]
- Reddy, A.; Indragandhi, V.; Ravi, L.; Subramaniyaswamy, V. Detection of Cracks and damage in wind turbine blades using artificial intelligence-based image analytics. Measurement 2019, 147, 106823. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Liu, Y.; Yao, J.; Lu, X.; Xie, R.; Li, L. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 2019, 338, 139–153. [Google Scholar] [CrossRef]
- Xiang, C.; Guo, J.; Cao, R.; Deng, L. A crack-segmentation algorithm fusing transformers and convolutional neural networks for complex detection scenarios. Autom. Constr. 2023, 152, 104894. [Google Scholar] [CrossRef]
- Yeum, C.M.; Dyke, S.J.; Ramirez, J. Visual data classification in post-event building reconnaissance. Eng. Struct. 2018, 155, 16–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Cai, F. On bridge surface crack detection based on an improved YOLO v3 algorithm. IFAC-PapersOnLine 2020, 53, 8205–8210. [Google Scholar] [CrossRef]
- Wang, M.; Li, K.; Zhu, X.; Zhao, Y. Detection of surface defects on railway tracks based on deep learning. IEEE Access 2022, 10, 126451–126465. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Xin, Z. Efficient detection model of steel strip surface defects based on YOLO-V7. IEEE Access 2022, 10, 133936–133944. [Google Scholar] [CrossRef]
- Kumar, P.; Batchu, S.; Kota, S.R. Real-time concrete damage detection using deep learning for high rise structures. IEEE Access 2021, 9, 112312–112331. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.; Lee, D. Robust concrete crack detection using deep learning-based semantic segmentation. Int. J. Aeronaut. Space Sci. 2019, 20, 287–299. [Google Scholar] [CrossRef]
- Choi, W.; Cha, Y.J. SDDNet: Real-time crack segmentation. IEEE Trans. Ind. Electron. 2019, 67, 8016–8025. [Google Scholar] [CrossRef]
- Kang, D.; Benipal, S.S.; Gopal, D.L.; Cha, Y.J. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning. Autom. Constr. 2020, 118, 103291. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 405–420. [Google Scholar]
- Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Kolesnikov, A.; et al. The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 2020, 128, 1956–1981. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13. pp. 740–755. [Google Scholar]
- Veropoulos, K.; Campbell, I.C.G.; Cristianini, N. Controlling the Sensitivity of Support Vector Machines. In Proceedings of the International Joint Conference on Artificial Intelligence, (IJCAI99), Stockholm, Sweden, 31 July–6 August 1999; pp. 55–60. [Google Scholar]
- Lipton, Z.C.; Elkan, C.; Naryanaswamy, B. Optimal thresholding of classifiers to maximize F1 measure. In Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France, 15–19 September 2014; Proceedings, Part II 14. pp. 225–239. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 658–666. [Google Scholar]
YOLOv7 | Deeplabv2 | |
---|---|---|
Raw | Custom 727 images | |
Train | 643 → 2076 (Augmentation) | 2307 |
Val | 32 | - |
Test | 52 |
YOLOv7 | Deeplabv2 | |
---|---|---|
GPU | NVIDIA GeForce RTX3090 | NVIDIA GeForce RTX2080Ti |
OS | Win10 | Win11 |
Framework | torch 1.11 | Tensorflow 1.15 |
CUDA | 11 | 10 |
Python | 3.7 | 3.7 |
Deeplabv2 | InYD | DCIY | ||||
---|---|---|---|---|---|---|
Mean | σ | Mean | σ | Mean | σ | |
R | 0.797 | 0.254 | 0.823 | 0.265 | 0.731 | 0.157 |
P | 0.510 | 0.333 | 0.478 | 0.321 | 0.843 | 0.088 |
F1 | 0.567 | 0.333 | 0.551 | 0.329 | 0.770 | 0.107 |
mIoU | 0.466 | 0.305 | 0.448 | 0.301 | 0.638 | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.-H.; Woo, J.; Kang, C.H.; Kim, S.Y. Damage Detection and Segmentation in Disaster Environments Using Combined YOLO and Deeplab. Remote Sens. 2024, 16, 4267. https://doi.org/10.3390/rs16224267
Jo S-H, Woo J, Kang CH, Kim SY. Damage Detection and Segmentation in Disaster Environments Using Combined YOLO and Deeplab. Remote Sensing. 2024; 16(22):4267. https://doi.org/10.3390/rs16224267
Chicago/Turabian StyleJo, So-Hyeon, Joo Woo, Chang Ho Kang, and Sun Young Kim. 2024. "Damage Detection and Segmentation in Disaster Environments Using Combined YOLO and Deeplab" Remote Sensing 16, no. 22: 4267. https://doi.org/10.3390/rs16224267
APA StyleJo, S. -H., Woo, J., Kang, C. H., & Kim, S. Y. (2024). Damage Detection and Segmentation in Disaster Environments Using Combined YOLO and Deeplab. Remote Sensing, 16(22), 4267. https://doi.org/10.3390/rs16224267