Multiscale Spatiotemporal Variation Analysis of Regional Water Use Efficiency Based on Multifractals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Other Data
2.3. Methods
2.3.1. WUE Calculation
2.3.2. Sen’s Slope Estimator and Mann–Kendall Trend Test Methods
2.3.3. Characterization of Fractal Parameters
2.3.4. Machine Learning Method Integration Analysis
3. Results
3.1. Analysis of WUE in Anhui Province by Time Scale
3.1.1. Characteristics of WUE Changes in Anhui Province on Annual, Quarterly, and Monthly Scales
3.1.2. Multiple Fractal Analysis on Different Time Scales
3.1.3. Trends in Spatial Changes in WUE in Anhui Province on Different Time Scales
3.2. WUE Analysis of the Five Natural Terrain Areas
3.2.1. WUE Changes in Five Natural Terrain Regions
3.2.2. Multiple Fractal Analysis of WUE in Different Natural Terrain Regions
3.3. WUE Analysis for Eight Major Soil Types
3.3.1. Analysis of WUE Changes in Association with Soil Type
3.3.2. Multiple Fractal Analysis of Eight Major Soil Types
3.4. Analysis of the Influencing Factors
4. Discussion
4.1. Spatial and Temporal WUE Variation Characteristics
4.2. Application Analysis of Multifractals in WUE
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beer, C.; Ciais, P.; Reichstein, M.; Baldocchi, D.; Law, B.E.; Papale, D.; Soussana, J.F.; Ammann, C.; Buchmann, N.; Frank, D.; et al. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 2009, 23, 13. [Google Scholar] [CrossRef]
- Li, F.; Xiao, J.F.; Chen, J.Q.; Ballantyne, A.; Jin, K.; Li, B.; Abraha, M.; John, R. Global water use efficiency saturation due to increased vapor pressure deficit. Science 2023, 381, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wei, F.; Wang, S.; Zhang, W.; Fensholt, R.; Xiao, X.; Fu, B. Critical thresholds for nonlinear responses of ecosystem water use efficiency to drought. Sci. Total Environ. 2024, 918, 170713. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B.; Doney, S.C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 2018, 359, eaam8328. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Zhang, K.; Liu, L.X. Water use efficiency at multi-time scales and its response to episodic drought and wet periods in a typical subtropical evergreen forest of Southeast China. Ecol. Indic. 2023, 151, 12. [Google Scholar] [CrossRef]
- Xu, J.H.; Chen, Y.N.; Li, W.H.; Ji, M.H.; Dong, S. The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. J. Geogr. Sci. 2009, 19, 25–35. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10, 14. [Google Scholar] [CrossRef]
- Huang, L.; He, B.; Han, L.; Liu, J.J.; Wang, H.Y.; Chen, Z.Y. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci. Total Environ. 2017, 601, 1097–1107. [Google Scholar] [CrossRef]
- Xue, B.L.; Guo, Q.H.; Otto, A.; Xiao, J.F.; Tao, S.L.; Li, L. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere 2015, 6, 18. [Google Scholar] [CrossRef]
- Ding, H.; Yuan, Z.; Shi, X.; Yin, J.; Chen, F.; Shi, M.; Zhang, F. Soil moisture content-based analysis of terrestrial ecosystems in China: Water use efficiency of vegetation systems. Ecol. Indic. 2023, 150, 110271. [Google Scholar] [CrossRef]
- Yu, G.R.; Song, X.; Wang, Q.F.; Liu, Y.F.; Guan, D.X.; Yan, J.H.; Sun, X.M.; Zhang, L.M.; Wen, X.F. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytol. 2008, 177, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.R.; Zhu, X.J.; Fu, Y.L.; He, H.L.; Wang, Q.F.; Wen, X.F.; Li, X.R.; Zhang, L.M.; Zhang, L.; Su, W.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Piao, S.L.; Huang, M.T.; Ciais, P.; Zeng, Z.Z.; Cheng, L.; Li, X.R.; Zhang, X.P.; Mao, J.F.; Peng, S.S.; et al. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models. Glob. Ecol. Biogeogr. 2016, 25, 311–323. [Google Scholar] [CrossRef]
- Jiang, S.; Liang, C.; Cui, N.; Zhao, L.; Liu, C.; Feng, Y.; Hu, X.; Gong, D.; Zou, Q. Water use efficiency and its drivers in four typical agroecosystems based on flux tower measurements. Agric. For. Meteorol. 2020, 295, 108200. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, S.Y.; Sun, H.Y.; Shao, L.W.; Wang, Y.Z. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades. Agric. Water Manag. 2011, 98, 1097–1104. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration:: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Thornton, P.E.; Rosenbloom, N.A. Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. Model. 2005, 189, 25–48. [Google Scholar] [CrossRef]
- Senf, C. Seeing the System from Above: The Use and Potential of Remote Sensing for Studying Ecosystem Dynamics. Ecosystems 2022, 25, 1719–1737. [Google Scholar] [CrossRef]
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef]
- Zhan, C.; Liang, C.; Zhao, L.; Zhang, Y.; Cheng, L.; Jiang, S.; Xing, L. Multifractal characteristics analysis of daily reference evapotranspiration in different climate zones of China. Phys. A Stat. Mech. Its Appl. 2021, 583, 126273. [Google Scholar] [CrossRef]
- Weng, B.; Bi, W.; Zhao, Z.; Xu, T.; Yan, D. Spatial and temporal variability of soil moisture based on multifractal analysis. Arab. J. Geosci. 2018, 11, 469. [Google Scholar] [CrossRef]
- Ko, A.; Mascaro, G.; Vivoni, E.R. Irrigation impacts on scaling properties of soil moisture and the calibration of a multifractal downscaling model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3128–3142. [Google Scholar] [CrossRef]
- Biswas, A.; Zeleke, T.; Si, B. Multifractal detrended fluctuation analysis in examining scaling properties of the spatial patterns of soil water storage. Nonlinear Process. Geophys. 2012, 19, 227–238. [Google Scholar] [CrossRef]
- Ariza-Villaverde, A.B.; Pavón-Domínguez, P.; Carmona-Cabezas, R.; de Ravé, E.G.; Jiménez-Hornero, F.J. Joint multifractal analysis of air temperature, relative humidity and reference evapotranspiration in the middle zone of the Guadalquivir river valley. Agric. For. Meteorol. 2019, 278, 107657. [Google Scholar] [CrossRef]
- Rahmani, F.; Fattahi, M.H. Exploring the sensitivity of river flow patterns to meteorological drought using multifractal and cross-correlation applications. J. Water Clim. Change 2024, 11, 4127–4137. [Google Scholar] [CrossRef]
- Gómez-Gómez, J.; Plocoste, T.; Alexis, E.; Jiménez-Hornero, F.J.; de Ravé, E.G.; Nuiro, S.P. Multifractal detrended fluctuation analysis of rainfall time series in the Guadeloupe archipelago. J. Hydrol. 2023, 626, 12. [Google Scholar] [CrossRef]
- Lovejoy, S. Area-perimeter relation for rain and cloud areas. Science 1982, 216, 185–187. [Google Scholar] [CrossRef]
- García-Marín, A.P.; Estévez, J.; Medina-Cobo, M.T.; Ayuso-Muñoz, J.L. Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. J. Hydrol. 2015, 529, 106–119. [Google Scholar] [CrossRef]
- Burrough, P.A. Fractal dimensions of landscapes and other environmental data. Nature 1981, 294, 240–242. [Google Scholar] [CrossRef]
- Silva, A.; Stosic, T.; Arsenic, I.; Menezes, R.S.C.; Stosic, B. Multifractal analysis of standardized precipitation index in Northeast Brazil. Chaos Solitons Fractals 2023, 172, 13. [Google Scholar] [CrossRef]
- Gómez-Gómez, J.; Carmona-Cabezas, R.; Sánchez-López, E.; de Ravé, E.G.; Jiménez-Hornero, F.J. Multifractal fluctuations of the precipitation in Spain (1960–2019). Chaos Solitons Fractals 2022, 157, 12. [Google Scholar] [CrossRef]
- Adarsh, S.; Nourani, V.; Archana, D.S.; Dharan, D.S. Multifractal description of daily rainfall fields over India. J. Hydrol. 2020, 586, 14. [Google Scholar] [CrossRef]
- Tan, X.Z.; Gan, T.Y. Multifractality of Canadian precipitation and streamflow. Int. J. Climatol. 2017, 37, 1221–1236. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1. [Google Scholar]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Koscielny-Bunde, E.; Kantelhardt, J.W.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol. 2006, 322, 120–137. [Google Scholar] [CrossRef]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; van Dijk, A.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 2016, 6, 75–78. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.J.; Falk, M.; Fuentes, J.D.; et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef]
- Xu, W.T.; Jin, J.L.; Zhang, J.Y.; Liu, Y.L.; Shu, Z.K.; Wang, G.Q.; Bao, Z.X.; Liu, C.S.; Guan, T.S.; He, R.M. Evaluation and analysis of spatio-temporal variation of water resources carrying capacity and restraining factor: A case study in Anhui Province, China. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 25. [Google Scholar] [CrossRef]
- Sheng, W.; Hong-Mei, X.; De-Yan, W. Projection of vegetation net primary productivity based on CMIP5 models in Anhui province. Adv. Clim. Chang. Res. 2018, 14, 266. [Google Scholar]
- Guo, X.Y.; Zhang, X.Q.; Zhang, Z.K.; Yang, H.; Zhu, W.Y.; Feng, S.M. The non-uniform time-lag and cumulative responses of terrestrial ecosystem water use efficiency to climate change in Lake Victoria Basin, East Africa. J. Hydrol. 2023, 625, 16. [Google Scholar] [CrossRef]
- Frimpong, B.F.; Koranteng, A.; Molkenthin, F. Analysis of temperature variability utilising Mann–Kendall and Sen’s slope estimator tests in the Accra and Kumasi Metropolises in Ghana. Environ. Syst. Res. 2022, 11, 24. [Google Scholar] [CrossRef]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Alemu, Z.A.; Dioha, M.O. Climate change and trend analysis of temperature: The case of Addis Ababa, Ethiopia. Environ. Syst. Res. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Wu, J.; Jin, X.; Mi, S.; Tang, J. An effective method to compute the box-counting dimension based on the mathematical definition and intervals. Results Eng. 2020, 6, 100106. [Google Scholar] [CrossRef]
- Kisan, S.; Mishra, S.; Rout, S.B. Fractal dimension in medical imaging: A review. IRJET 2017, 5, 1102–1106. [Google Scholar]
- Li, J.; Du, Q.; Sun, C.X. An improved box-counting method for image fractal dimension estimation. Pattern Recognit. 2009, 42, 2460–2469. [Google Scholar] [CrossRef]
- Lin, M.; Chen, L.; Ma, Y. Research on stream flow series fractal dimension analysis and its relationship with soil erosion. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 1821–1823. [Google Scholar]
- Xu, J.Y.; Zhang, Z.X.; Zhao, X.L.; Wen, Q.K.; Zuo, L.J.; Wang, X.; Yi, L. Spatial and temporal variations of coastlines in northern China (2000–2012). J. Geogr. Sci. 2014, 24, 18–32. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, W.; Wen, T. Prediction of winter wheat yield and dry matter in North China Plain using machine learning algorithms for optimal water and nitrogen application. Agric. Water Manag. 2023, 277, 108140. [Google Scholar] [CrossRef]
- Fölling, A.; Lepping, J. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018. Available online: https://inria.hal.science/hal-00758208v1 (accessed on 20 September 2024).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://www.semanticscholar.org/paper/LightGBM%3A-A-Highly-Efficient-Gradient-Boosting-Tree-Ke-Meng/497e4b08279d69513e4d2313a7fd9a55dfb73273?utm_source=direct_link (accessed on 20 September 2024).
- Mo, X.; Liu, S.; Lin, Z.; Guo, R. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agric. Ecosyst. Environ. 2009, 134, 67–78. [Google Scholar] [CrossRef]
- Du, X.; Zhao, X.; Zhou, T.; Jiang, B.; Xu, P.; Wu, D.; Tang, B. Effects of climate factors and human activities on the ecosystem water use efficiency throughout Northern China. Remote Sens. 2019, 11, 2766. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Qin, W.L.; Chen, S.Y.; Shao, L.W.; Sun, H.Y. Responses of yield and WUE of winter wheat to water stress during the past three decades-A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Zhang, J.; Liu, Y.Q. Impacts of Crop Type and Climate Changes on Agricultural Water Dynamics in Northeast China from 2000 to 2020. Remote Sens. 2024, 16, 22. [Google Scholar] [CrossRef]
- Ernakovich, J.G.; Hopping, K.A.; Berdanier, A.B.; Simpson, R.T.; Kachergis, E.J.; Steltzer, H.; Wallenstein, M.D. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 2014, 20, 3256–3269. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G.; Wu, Q.; Cao, L.; Awange, J.; Song, Y.; Wu, M. Spatio-temporal patterns and drivers of carbon-water coupling in frozen soil zones across the gradients of freezing over the Qinghai-Tibet Plateau. J. Hydrol. 2023, 621, 129674. [Google Scholar] [CrossRef]
- Sett, T.; Nandy, S.; Patel, N.R.; Padalia, H.; Srinet, R.; Watham, T. Spatio-temporal dynamics of water use efficiency over forest ecosystems using time series satellite data and carbon flux measurements. For. Ecol. Manag. 2023, 548, 12. [Google Scholar] [CrossRef]
- Guo, F.S.; Jin, J.X.; Yong, B.; Wang, Y.; Jiang, H. Responses of water use efficiency to phenology in typical subtropical forest ecosystems-A case study in Zhejiang Province. Sci. China-Earth Sci. 2020, 63, 145–156. [Google Scholar] [CrossRef]
- Farley, K.A.; Kelly, E.F.; Hofstede, R.G.; Ecosystems, J. Soil organic carbon and water retention after conversion of grasslands to pine plantations in the Ecuadorian Andes. Ecosystems 2004, 7, 729–739. [Google Scholar] [CrossRef]
- Brümmer, C.; Black, T.A.; Jassal, R.S.; Grant, N.J.; Spittlehouse, D.L.; Chen, B.; Nesic, Z.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 2012, 153, 14–30. [Google Scholar] [CrossRef]
- Millán, H.; Macías, I.; Valderá, N. Multifractality of the standardized precipitation index: Influence of pan evaporation and virtual temperature-based potential evapotranspiration. Meteorol. Atmos. Phys. 2022, 134, 22. [Google Scholar] [CrossRef]
- Krzyszczak, J.; Baranowski, P.; Zubik, M.; Hoffmann, H. Temporal scale influence on multifractal properties of agro-meteorological time series. Agric. For. Meteorol. 2017, 239, 223–235. [Google Scholar] [CrossRef]
- Liu, Z.H.; Han, L.; Du, C.Y.; Cao, H.Y.; Guo, J.H.; Wang, H.Y. Fractal and Multifractal Characteristics of Lineaments in the Qianhe Graben and Its Tectonic Significance Using Remote Sensing Images. Remote Sens. 2021, 13, 24. [Google Scholar] [CrossRef]
- Wei, S.-G.; Li, L.; Huang, Z.-L.; Ye, W.-H.; Gong, G.-Q.; Zhou, X.-Y.; Lian, J.-Y. Multifractal analysis of diversity scaling laws in a subtropical forest. Ecol. Complex. 2013, 13, 1–7. [Google Scholar] [CrossRef]
- Dong, Q.Y.; Xiang, J.; Song, C.; Wang, P.; Wen, H.T.; Yan, M.J. Spatial distribution characteristics and main controlling factors of germanium in soil of northern Dabie Mountains, China. J. Groundw. Sci. Eng. 2022, 10, 381–392. [Google Scholar]
- Zhang, K.; Wei, G.; Luo, Y.; Zhao, Y.; Zhao, Y.; Zhang, J. Evaluation of aggregate distribution homogeneity for asphalt pavement based on the fractal characteristic of three-dimensional texture. Int. J. Pavement Res. Technol. 2024, 17, 577–594. [Google Scholar] [CrossRef]
- Nie, Q.; Shi, K.; Gong, Y.; Ran, F.P.; Li, Z.M.; Chen, R.J.; Hua, L.Z. Spatial-Temporal Variability of Land Surface Temperature Spatial Pattern: Multifractal Detrended Fluctuation Analysis. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 2010–2018. [Google Scholar] [CrossRef]
- Wang, D.; Fu, B.J.; Zhao, W.W.; Hu, H.F.; Wang, Y.F. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China. Catena 2008, 72, 29–36. [Google Scholar] [CrossRef]
- Siqueira, G.M.; Silva, E.F.F.; Vidal-Vázquez, E.; Paz-González, A. Multifractal and joint multifractal analysis of general soil properties and altitude along a transect. Biosyst. Eng. 2018, 168, 105–120. [Google Scholar] [CrossRef]
Z Value | WUE Trend |
---|---|
2.58 ≤ |Z| | Extremely significant trend |
1.96 < |Z| < 2.58 | Significant trend |
1.65 < |Z| < 1.96 | Moderately significant trend |
|Z| ≤ 1.65 | No significant trend |
Month | αmin | αmax | Δα | f (αmin) | f (αmax) | Δf(α) | |
---|---|---|---|---|---|---|---|
Average monthly WUE | January | 1.9143 | 3.1780 | 1.2637 | −0.5752 | 1.5748 | −2.1499 |
February | 1.9141 | 3.2437 | 1.3296 | −0.8782 | 1.7050 | −2.5832 | |
March | 1.9664 | 3.1348 | 1.1683 | −0.9424 | 1.9611 | −2.9035 | |
April | 1.9440 | 3.1168 | 1.1728 | −0.8169 | 1.9449 | −2.7618 | |
May | 1.9457 | 3.2338 | 1.2881 | −0.6615 | 1.9467 | −2.6081 | |
June | 1.9503 | 3.1639 | 1.2136 | −0.6158 | 1.9505 | −2.5663 | |
July | 1.9592 | 3.3099 | 1.3507 | −1.0720 | 1.9570 | −3.0290 | |
August | 1.9600 | 3.8190 | 1.8590 | −1.4472 | 1.9572 | −3.4044 | |
September | 1.9417 | 2.9046 | 0.9629 | 0.3274 | 1.9434 | −1.6160 | |
October | 1.9628 | 2.8032 | 0.8404 | 0.2303 | 1.9592 | −1.7289 | |
November | 1.9287 | 3.1144 | 1.1857 | −1.0604 | 1.7647 | −2.8251 | |
December | 1.8696 | 3.2778 | 1.4083 | −0.8743 | 1.5451 | −2.4194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Wang, Y.; Zhang, Y.; Wang, Q.; Wu, P.; Yang, H.; He, Z.; Li, J. Multiscale Spatiotemporal Variation Analysis of Regional Water Use Efficiency Based on Multifractals. Remote Sens. 2024, 16, 4269. https://doi.org/10.3390/rs16224269
Zhao T, Wang Y, Zhang Y, Wang Q, Wu P, Yang H, He Z, Li J. Multiscale Spatiotemporal Variation Analysis of Regional Water Use Efficiency Based on Multifractals. Remote Sensing. 2024; 16(22):4269. https://doi.org/10.3390/rs16224269
Chicago/Turabian StyleZhao, Tong, Yanan Wang, Yulu Zhang, Qingyun Wang, Penghai Wu, Hui Yang, Zongyi He, and Junli Li. 2024. "Multiscale Spatiotemporal Variation Analysis of Regional Water Use Efficiency Based on Multifractals" Remote Sensing 16, no. 22: 4269. https://doi.org/10.3390/rs16224269
APA StyleZhao, T., Wang, Y., Zhang, Y., Wang, Q., Wu, P., Yang, H., He, Z., & Li, J. (2024). Multiscale Spatiotemporal Variation Analysis of Regional Water Use Efficiency Based on Multifractals. Remote Sensing, 16(22), 4269. https://doi.org/10.3390/rs16224269