The Preliminary Study of Environmental Variations Around the Du-Ku Highway Since 2000
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Research Data
2.2.2. Methods
- 1.
- Calculation of some environmental indices:
- 2.
- Research route:
3. Results
3.1. The Topography and Terrain Along the DKH
3.2. The Characteristics Surface Water Along the DKH
3.3. LST, NDVI and TVDI Around the DKH
4. Discussion
4.1. Climate Conditions Influence the Surface Environment
4.2. The Variance and Trend of Different Indexes
5. Conclusions
- Both the area and number of surface water bodies around the DKH have shown an increasing trend, while the FD and SI of the water bodies have remained relatively stable. In terms of distribution, water bodies smaller than 0.1 hectares account for the largest proportion, while those larger than 0.5 hectares account for the smallest. The greatest increase was observed in water bodies ranging from 0.1 to 0.5 hectares. The highway projects in mountainous regions should account for potential changes in local water bodies to mitigate effects on hydrological influence in the future.
- By categorizing different intervals, the study revealed that the LST in the area along the DKH is predominantly between 280–285 K, accounting for 16.7% to 36.38% of the region, with a median LST varying from 280.76 K to 286.38 K. The NDVI values are generally low, mostly below 0.4, and are characterized by two distinct peaks with the median NDVI values peaking at 0.23 and bottoming out at 0.17. The TVDI is predominantly found at the extremes, with a significant area showing values above 0.8 (29.37% to 46.03%) and below 0.2 (19.88% to 25.14%), while the median TVDI values fluctuate between 0.35 and 0.55. Due to the low value of NDVI, a vegetation buffer around the mountainous highway might reduce disasters of the engineering.
- Analysis of the variability and trends of LST, NDVI, and TVDI at individual points shows that LST and NDVI generally fall within low variability, positive trend intervals across most regions, while TVDI remains largely in low variability, no significant trend intervals. However, in the region at latitude 43° and longitude 84°, both the LST and TVDI exhibit high variability and negative trends. These high variability zones should receive more attention to avoid the occurrence of disasters.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DKH | Du-Ku Highway (Dushanzi-Kuqa Highway) |
LST | Land Surface Temperature |
NDVI | Normalized Difference Vegetation Index |
TVDI | Temperature Vegetation Dryness Index |
SI | Shape Index |
FD | Fractal Dimension |
YWCH | Yearly Water Classification History |
YSW | Yearly Surface Water |
GEE | Google Earth Engine |
LSTs | Sequence of Land Surface Temperature |
NDVIs | Sequence of Normalized Difference Vegetation Index |
TVDIs | Sequence of Temperature Vegetation Dryness Index |
MAAT | Mean Annual Air Temperature |
References
- Li, Y.C.; Qi, S.W.; Zheng, B.W.; Yao, X.L.; Guo, S.F.; Zou, Y.; Lu, X.; Tang, F.J.; Guo, X.Y.; Waqar, M.F.; et al. Multi-Scale Engineering Geological Zonation for Linear Projects in Mountainous Regions: A Case Study of National Highway 318 Chengdu-Shigatse Section. Remote Sens. 2023, 15, 4619. [Google Scholar] [CrossRef]
- Mu, Y.; Ma, W.; Niu, F.; Liu, G.; Zhang, Q. Study on Geotechnical Hazards to Roadway Engineering in Permafrost Regions. J. Disaster Prev. Mitig. Eng. 2014, 34, 259–267. [Google Scholar]
- Jin, H.J.; Wei, Z.; Wang, S.L.; Yu, Q.H.; Lue, L.Z.; Wu, Q.B.; Ji, Y.J. Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China. Eng. Geol. 2008, 101, 96–109. [Google Scholar] [CrossRef]
- Ma, W.; Niu, F.; Mu, Y. Basic Research on the Major Permafrost Projects in the Qinghai-Tibet Plateau. Adv. Earth Sci. 2012, 27, 1185–1191. [Google Scholar]
- Lin, Z.; Niu, F.; Xu, J.; Xu, Z.; Ping, W. The Effect of Embankment Construction on Permafrost in the Tibetan Plateau. J. Glaciol. Geocryol. 2009, 31, 1127–1136. [Google Scholar]
- Hu, S.; Tong, W.; Mao, K. Study on Highway Landscape Environment Assessment and Grading Method. Sustainability 2023, 15, 4904. [Google Scholar] [CrossRef]
- Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.O.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, O. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Aghakouchak, A. Extremes in a Changing Climate: Detection, Analysis and Uncertainty; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–425. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef]
- Godt, J.W.; Coe, J.A. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado. Geomorphology 2007, 84, 80–97. [Google Scholar] [CrossRef]
- Harris, C.; Lewkowicz, A.G. An analysis of the stability of thawing slopes, Ellesmere Island, Nunavut, Canada. Can. Geotech. J. 2000, 37, 449–462. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Harris, C. Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Permafr. Periglac. Process. 2005, 16, 115–130. [Google Scholar] [CrossRef]
- Cui, P.; Dang, C.; Cheng, Z.L.; Scott, K.M. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Phys. Geogr. 2010, 31, 508–527. [Google Scholar] [CrossRef]
- Ding, Z.K.; Niu, F.J.; Li, G.Y.; Mu, Y.H.; Chai, M.T.; He, P.F. The Outburst of a Lake and Its Impacts on Redistribution of Surface Water Bodies in High-Altitude Permafrost Region. Remote Sens. 2022, 14, 2918. [Google Scholar] [CrossRef]
- Ding, Z.K.; Niu, F.J.; Mu, Y.H.; He, P.F.; Gao, Z.Y.; Fan, X.W. Primarily investigation with multiple methods on permafrost state around a rapid change lake in the interior of the Tibet Plateau. Environ. Res. Lett. 2023, 18, 114010. [Google Scholar] [CrossRef]
- Ding, Z.K.; Niu, F.J.; Mu, Y.H.; Li, G.Y.; Chai, M.T.; Gao, Z.Y.; Chen, L.; Zhang, K.; Mao, Y.C. Dynamic variations in thermal regime and surface deformation along the drainage channel for an expanding lake on the Tibetan Plateau. GIScience Remote Sens. 2023, 60, 2266661. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Zhong, X.; Zhou, J.; Zhu, L.; Yao, T.; Xie, C.; Ju, J.; Chen, D.; Yang, K.; et al. Domino effect of a natural cascade alpine lake system on the Third Pole. Proc. Natl. Acad. Sci. USA 2022, 1, pgac053. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, S.; Zhou, K.L.; Jin, W.; Ma, N.; Zeng, C. Hazard characteristics and causes of the “7.22” 2021 debris flow in Shenshuicao gully, Qilian Mountains, NW China. Landslides 2023, 20, 111–125. [Google Scholar] [CrossRef]
- Chen, L.; Yu, H.; Li, X.L.; Ding, Z.K. Study on the Effect of Unilateral Sand Deposition on the Spatial Distribution and Temporal Evolution Pattern of Temperature beneath the Embankment. Adv. Mater. Sci. Eng. 2021, 2021, 5403567. [Google Scholar] [CrossRef]
- Du, Q.S.; Chen, D.; Li, G.Y.; Cao, Y.P.; Zhou, Y.; Chai, M.T.; Wang, F.; Qi, S.S.; Wu, G.; Gao, K.; et al. Preliminary Study on InSAR-Based Uplift or Subsidence Monitoring and Stability Evaluation of Ground Surface in the Permafrost Zone of the Qinghai-Tibet Engineering Corridor, China. Remote Sens. 2023, 15, 3728. [Google Scholar] [CrossRef]
- Huang, Y.H.; Niu, F.J.; Chen, J.B.; He, P.F.; Yuan, K.; Su, W.J. Express highway embankment distress and occurring probability in permafrost regions on the Qinghai-Tibet Plateau. Transp. Geotech. 2023, 42, 101069. [Google Scholar] [CrossRef]
- Lin, Z.J.; Niu, F.J.; Luo, J.; Lu, J.H.; Liu, H. Changes in permafrost environments caused by construction and maintenance of Qinghai-Tibet Highway. J. Cent. South Univ. 2011, 18, 1454–1464. [Google Scholar] [CrossRef]
- Mehmood, K.; Anne, S.A.; Luo, M.; Akram, M.; Zubair, M.; Khan, K.A.; Khan, W.R. Assessing Chilgoza Pine (Pinus gerardiana) forest fire severity: Remote sensing analysis, correlations, and predictive modeling for enhanced management strategies. Trees For. People 2024, 16, 100521. [Google Scholar] [CrossRef]
- Mehmood, K.; Anees, S.A.; Rehman, A.; Pan, S.A.; Tariq, A.; Zubair, M.; Liu, Q.J.; Rabbi, F.; Khan, K.A.; Luo, M. Exploring spatiotemporal dynamics of ndvi and climate-driven responses in ecosystems: Insights for sustainable management and climate resilience. Ecol. Inform. 2024, 80, 10253210. [Google Scholar] [CrossRef]
- Anees, S.A.; Mehmood, K.; Khan, W.R.; Sajjad, M.; Alahmadi, T.A.; Alharbi, S.A.; Luo, M. Integration of machine learning and remote sensing for above ground biomass estimation through landsat-9 and field data in temperate forests of the himalayan region. Ecol. Inform. 2024, 82, 102732. [Google Scholar] [CrossRef]
- Luo, M.; Anees, S.A.; Huang, Q.Y.; Qin, X.; Qin, Z.H.; Fan, J.L.; Han, G.P.; Zhang, L.G.; Shafri, H.Z.M. Improving forest above-ground biomass estimation by integrating individual machine learning models. Forests 2024, 15, 975. [Google Scholar] [CrossRef]
- Gao, Y.; Chai, M.T.; Ma, W.; Gao, Y.T. Spatial distribution of supra-permafrost groundwater in the Qinghai-Tibet Engineering Corridor using inversion models. Adv. Clim. Chang. Res. 2024, 15, 31–41. [Google Scholar] [CrossRef]
- Mu, M.; Mu, C.C.; Lei, P.S.; Mo, X.X.; Qiao, Y.; Chen, X.; Liu, H.B. Thermokarst lake changes along the Qinghai-Tibet Highway during 1991–2020. Geomorphology 2023, 441, 108895. [Google Scholar] [CrossRef]
- Niu, F.J.; Yin, G.A.; Luo, J.; Lin, Z.J.; Liu, M.H. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS. Remote Sens. 2018, 10, 215. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, Y.; Fang, H.G.; Deng, H.J. Impact of climate change on water resources in the Tianshan Mountains, Central Asia. Acta Geogr. Sin. 2017, 1, 18–26. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.M.; Qin, Q.Y. Evolution and Driving Factors of Snow Phenology in the Chinese Tianshan Mountainous Region. Remote Sens. Technol. Appl. 2022, 6, 1350–1360. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Anees, S.A.; Mehmood, K.; Rehman, A.; Rehman, N.U.; Muhammad, S.; Shahzad, F.; Hussain, K.; Luo, M.; Alarfaj, A.A.; Alharbi, S.A.; et al. Unveiling fractional vegetation cover dynamics: A spatiotemporal analysis using modis ndvi and machine learning. Environ. Sustain. Indic. 2024, 24, 100485. [Google Scholar] [CrossRef]
- Mehmood, K.; Anees, S.A.; Rehman, A.; Rehman, N.U.; Muhammad, S.; Shahzad, F.; Liu, Q.; Alharbi, S.A.; Alfarraj, S.; Ansari, M.J.; et al. Assessment of climatic influences on net primary productivity along elevation gradients in temperate ecoregions. Trees For. People 2024, 18, 100657. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Chen, J. Study of the vegetation change due to the reinforcement and rebuilding along the qinghai-tibet highway. J. Glaciol. Geocryol. 2014, 36, 1017–1025. [Google Scholar] [CrossRef]
- Luo, L.H.; Zhuang, Y.L.; Zhang, M.Y.; Zhang, Z.Q.; Ma, W.; Zhao, W.Z.; Zhao, L.; Wang, L.; Shi, Y.M.; Zhang, Z.; et al. An integrated observation dataset of the hydrological and thermal deformation in permafrost slopes and engineering infrastructure in the qinghai-tibet engineering corridor. Earth Syst. Sci. Data 2021, 13, 4035–4052. [Google Scholar] [CrossRef]
- Li, C.B.; Adu, B.; Li, H.H.; Yang, D.H. Spatial and temporal variations of drought in sichuan province from 2001 to 2020 based on modified temperature vegetation dryness index (tvdi). Ecol. Indic. 2022, 141, 109106. [Google Scholar] [CrossRef]
- Ding, Y.J.; Zhang, L.F.; He, Y.; Cao, S.P.; Wei, X.; Guo, Y.; Ran, L.; Filonchyk, M. Spatiotemporal evolution of agricultural drought and its attribution under different climate zones and vegetation types in the yellow river basin of china. Sci. Total Environ. 2024, 914, 169687. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Ali, S.; Umair, M.; Makanda, T.A.; Shaik, M.R.; Khan, M. Study loss of vegetative cover and increased land surface temperature through remote sensing strategies under the inter-annual climate variability in Jinhua-Quzhou basin, China. Environ. Sci. Pollut. Res. Int. 2024, 31, 28950–28966. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Y.; Niu, F.; Ding, Z.; Shi, Y.; Li, L.; Zhang, L.; Yang, X. The Preliminary Study of Environmental Variations Around the Du-Ku Highway Since 2000. Remote Sens. 2024, 16, 4288. https://doi.org/10.3390/rs16224288
Mu Y, Niu F, Ding Z, Shi Y, Li L, Zhang L, Yang X. The Preliminary Study of Environmental Variations Around the Du-Ku Highway Since 2000. Remote Sensing. 2024; 16(22):4288. https://doi.org/10.3390/rs16224288
Chicago/Turabian StyleMu, Yanhu, Fujun Niu, Zekun Ding, Yajun Shi, Lingjie Li, Lijie Zhang, and Xiang Yang. 2024. "The Preliminary Study of Environmental Variations Around the Du-Ku Highway Since 2000" Remote Sensing 16, no. 22: 4288. https://doi.org/10.3390/rs16224288
APA StyleMu, Y., Niu, F., Ding, Z., Shi, Y., Li, L., Zhang, L., & Yang, X. (2024). The Preliminary Study of Environmental Variations Around the Du-Ku Highway Since 2000. Remote Sensing, 16(22), 4288. https://doi.org/10.3390/rs16224288